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Comparative Dynamics

• Recall basic neoclassical growth model in continuous time.

• System of two nonlinear differential equations in c(t), k(t)

ċ(t) =
Af 0(k(t))� � � ⇢

✓
c(t)

k̇(t) = Af(k(t))� �k(t)� c(t), F (k,A) = Af(k)

• Boundary conditions, k(0) > 0 given and transversality condition.

• For convenience, suppose economy starts in steady state, k(0) = k⇤.

• Consider permanent, unanticipated changes in parameters, determine path
of c(t), k(t) in response to such changes.
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Discount Rate ⇢new < ⇢

• Consider permanent, unanticipated decrease in discount rate ⇢.

• In short, an increase in the willingness to save.

• Work backwards from steady state effects to impact effects.

• Steady state effects:

– steady state k⇤ determined by Euler equation

Af 0(k⇤) = ⇢+ � ) dk⇤

d⇢
=

1
Af 00(k⇤)

< 0

so a decrease in ⇢ increases steady state k⇤

– then steady state c⇤ determined by resource constraint

c⇤ = Af(k⇤)� �k⇤ ) dc⇤

d⇢
=

⇥
Af 0(k⇤)� �

⇤
| {z }

=⇢>0

dk⇤

d⇢
< 0

so a decrease in ⇢ increases steady state c⇤ too
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Discount Rate ⇢new < ⇢

• What about impact effects and subsequent dynamics? Redraw the phase
diagram and see what’s changed.

• No effect on k̇(t) = 0 locus, C(k) ⌘ Af(k)� �k is invariant to ⇢.

• But shifts ċ(t) = 0 locus, to the right in this case, since k⇤ decreasing in ⇢.

• Stable arm shifts down, through new steady state c⇤⇤, k⇤⇤.

• Impact effects:

– initial capital k(0) is predetermined, here k(0) = k⇤

– initial consumption c(0) jumps to new stable arm through c⇤⇤, k⇤⇤

– how do we know which way to jump?

– must jump down, to c(0) < c⇤ to be on new stable arm

– if jumped up, to c(0) > c⇤, would be on diverging path
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Discount Rate ⇢
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Discount Rate ⇢new < ⇢
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Discount Rate ⇢new < ⇢
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Discount Rate ⇢new < ⇢

• So, on impact, consumption falls, c(0) < c⇤, then rises over time, passing
its initial level c⇤ before converging to c⇤⇤ > c⇤.

• Key intuition: More patient, willing to have less consumption in short
run to have more consumption in long run. On impact, resources
unchanged but cut consumption, save, accumulate capital, and eventually
have higher consumption.

• Notice that after the initial jump to c(0) < c⇤, consumption is then
always growing, consistent with the Euler equation

ċ(t)

c(t)
=

Af 0(k(t))� � � ⇢new

✓
> 0, k(t) < k⇤⇤, t > 0

• Marginal product of capital does not change on impact, Af 0(k(0)) = ⇢+ �,
but is now high compared to new lower discount rate ⇢new < ⇢.
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Productivity Anew > A

• Consider permanent, unanticipated increase in productivity A.

• Again work backwards from steady state effects to impact effects.

• Steady state effects:

– steady state k⇤ determined by Euler equation

Af 0(k⇤) = ⇢+ � ) dk⇤

dA
= � f 0(k⇤)

Af 00(k⇤)
> 0

so an increase in A increases steady state k⇤

– then steady state c⇤ determined by resource constraint

c⇤ = Af(k⇤)� �k⇤ ) dc⇤

dA
= f(k⇤) +

⇥
Af 0(k⇤)� �

⇤
| {z }

=⇢>0

dk⇤

dA
> 0

so an increase in A increases steady state c⇤ too
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Productivity A
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Productivity Anew > A
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Productivity Anew > A

• Long run effects seem superficially similar.

• But phase diagram is different in an important way.

• Increase in A shifts both ċ(t) = 0 locus and k̇(t) = 0 locus.

• Can no longer be sure that stable arm shifts down through new steady
state c⇤⇤, k⇤⇤, stable arm may shift up.

• Key intuition: Intertemporal elasticity of substitution E(c) = 1/✓.

– E(c) very high, very willing to substitute consumption over time, c(0)
jumps down on impact, c(0) < c⇤, but then grows quickly to c⇤⇤

– E(c) very low, very unwilling to substitute consumption over time, c(0)
jumps up on impact, c(0) > c⇤ but then grows slowly to c⇤⇤
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Productivity Anew > A

• To see this more formally, recall local dynamics governed by Jacobian

J =

0

B@
0

Af 00(k⇤)

✓
c⇤

�1 ⇢

1

CA

• Eigenvalues characterized by determinant and trace

det(J) = �1�2 =
Af 00(k⇤)

✓
c⇤ < 0, tr(J) = �1 + �2 = ⇢ > 0

• Evaluate to

�1 =
⇢�

q
⇢2 � 4Af 00(k⇤)c⇤

✓

2
< 0 <

⇢+
q

⇢2 � 4Af 00(k⇤)c⇤

✓

2
= �2

• Stable root �1 gives speed of convergence, unstable root �2 gives slope of
stable arm, i.e., policy function c = g(k) has slope g0(k⇤) = �2.

• Since f 00(k⇤) < 0, stable root �1 is increasing in ✓ while the unstable root
�2 is decreasing in ✓ with �1 ! 0� and �2 ! ⇢+ as ✓ ! 1.
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Productivity Anew > A

• Perfect substitutes

– E(c) = 1/✓ high, i.e., ✓ low, eigenvalues both large in magnitude

– speed of convergence is rapid and stable arm is steep

• Perfect complements

– E(c) = 1/✓ low, i.e., ✓ high, eigenvalues both small in magnitude

– speed of convergence is slow and stable arm is flat

• Example. Consider in particular f(k) = k↵. Determinant evaluates to

det(J) = �1�2 = �
1

✓
⇥

✓
(1� ↵)(⇢+ �)(⇢+ (1� ↵)�)

↵

◆
< 0

which is independent of A, hence eigenvalues �1,�2 independent of A.

• Up to the local approximation, Anew > A gives parallel shift in stable arm
with slope governed by E(c) = 1/✓.
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Productivity Anew > A: Local Dynamics
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Productivity Anew > A: Low ✓ (High IES)
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Productivity Anew > A: High ✓ (Low IES)
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Productivity Anew > A: Time Paths
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Adding Back Trend Growth

• Will now add back trend growth in A and L.

• Exogenous productivity and labor force growth

Ȧ(t) = gA(t), L̇(t) = nL(t)

• In anticipation of balanced growth, labor-augmenting productivity

Y (t) = F (K(t), A(t)L(t))

• Flow resource constraint

K̇(t) = F (K(t), A(t)L(t))� �K(t)� C(t), K(0) > 0
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Planning Problem

• Planner seeks to maximize utility of L(0) > 0 identical households

U =

Z 1

0
e�⇢t u

�C(t)

L(t)

�
L(t) dt ⇢ > 0

subject to the flow resource constraint

K̇(t) = F (K(t), A(t)L(t))� �K(t)� C(t), K(0) > 0

and exogenous productivity and labor

A(t) = egtA(0), L(t) = entL(0)

• What restrictions does balanced growth place on preferences? What
assumptions do we need to ensure this problem is well-defined?

• Write consumption per effective worker, capital per effective worker etc

c(t) ⌘
C(t)

A(t)L(t)
, k(t) ⌘

K(t)

A(t)L(t)
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Planning Problem

• So growth in capital per effective worker is

k̇(t)

k(t)
=

K̇(t)

K(t)
� (g + n)

=
F (K(t), A(t)L(t))� C(t)

K(t)
� (� + g + n)

=
f(k(t))� c(t)

k(t)
� (� + g + n)

• Hence resource constraint in intensive form is

k̇(t) = f(k(t))� (� + g + n)k(t)� c(t)

• With this in hand, write planning problem in c(t), k(t).
21



Planning Problem

• Planner seeks to maximize utility of L(0) > 0 identical households

U =

Z 1

0
e�⇢t u

�
c(t)A(t)

�
entL(0) dt

subject to the flow resource constraint

k̇(t) = f(k(t))� (� + g + n)k(t)� c(t), k(0) > 0

• To streamline notation, normalize A(0) = L(0) = 1.

• Tentatively suggests we need at least:

• Assumption⇤. ⇢ > n.

• Remark. Is this strictly necessary? Or sufficient? Depends on growth in
u(t) ⌘ u(c(t)A(t)), as we will see.
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Planning Problem

• Proceed heuristically. Suppose the problem is well-defined.

• Write current-value Hamiltonian

H(c, k,�;A) ⌘ u(cA) + �(f(k)� (� + g + n)k � c)

• With effective discount rate ⇢� n > 0, key optimality conditions

Hc = 0, Hk = (⇢� n)�� �̇, H� = k̇

along with the transversality condition. Calculating the derivatives

Hc = u0(cA)A� �

Hk = �(f 0(k)� (� + g + n))

H� = f(k)� (� + g + n)k � c
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Planning Problem

• Collecting terms, our system of optimality conditions can be written

�(t) = u0(c(t)A(t))A(t)

�̇(t) = (⇢� f 0(k(t)) + (� + g))�(t)

k̇(t) = f(k(t))� (� + g + n)k(t)� c(t)

along with the transversality condition and given initial condition.

• As usual, try to reduce this to a system in c(t), k(t) by eliminating �(t).

• Take log derivatives of the first condition

�̇(t)

�(t)
=

Ȧ(t)

A(t)
+

u00(c(t)A(t))

u0(c(t)A(t))

⇣
ċ(t)A(t) + c(t)Ȧ(t)

⌘

= g �
1

E(c(t)A(t))
⇥

✓
ċ(t)

c(t)
+ g

◆
, E(x) ⌘ �

u0(x)

u00(x)x

where E(x) is the intertemporal elasticity of substitution at x.
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Planning Problem

• Eliminating the multipliers and simplifying gives

ċ(t)

c(t)
+ g = E(c(t)A(t))⇥ (f 0(k(t))� � � ⇢)

• The left hand side is the growth rate of consumption per worker,
C(t)/L(t) = c(t)A(t), so this is just the usual consumption Euler equation.

• Now tentatively consider a balanced growth path where c(t) ! c⇤ and
k(t) ! k⇤ for some c⇤, k⇤ to be determined.

• For this to occur, it has to be the case that

g = E(c⇤A(t))⇥ (f 0(k⇤)� � � ⇢))

• For this to occur, it has to be the case that the intertemporal elasticity of
substitution E(c⇤A(t)) is constant even as A(t) grows exponentially.

• In short, at least asymptotically, E(x) must be constant. Incentives to
substitute consumption over time independent of level of consumption.
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Balanced Growth Preferences

• So, at least asymptotically, E(x) must have the constant elasticity form

u(x) =
x1�✓

� 1

1� ✓
, E(x) ⌘ �

u0(x)

u00(x)x
=

1

✓
> 0

• The the consumption Euler equation with trend growth simplifies to

ċ(t)

c(t)
=

f 0(k(t))� � � ⇢� ✓g

✓

• Essentially the same as in the basic model, but with ⇢+ ✓g instead of ⇢.

• Now consider the planner’s objective with these preferences.
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Back to the Planner’s Objective

• With this class of preferences, the planner’s objective is

U =

Z 1

0
e�(⇢�n)t (c(t)A(t))1�✓

1� ✓
dt =

Z 1

0
e�(⇢�n)t e(1�✓)gt c(t)

1�✓

1� ✓
dt

=

Z 1

0
e�(⇢�n�(1�✓)g)t c(t)1�✓

1� ✓
dt

• So instead of Assumption⇤ above, ⇢ > n, we really need:

• Assumption. ⇢ > n+ (1� ✓)g.

• Remarks. If ✓  1, this is tighter than ⇢ > n. But weaker if ✓ > 1
(usually considered the relevant case).

Balanced growth puts restrictions on technology (labor-augmenting
productivity) and preferences (constant intertemporal elasticity).
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Dynamical System

• Let ⇢̂ ⌘ ⇢� n� (1� ✓)g > 0 denote adjusted discount rate.

• Let �̂ ⌘ � + g + n denote adjusted depreciation rate.

• With these adjustments, dynamical system is then exactly as before

ċ(t) =
f 0(k(t))� �̂ � ⇢̂

✓
c(t)

k̇(t) = f(k(t))� �̂k(t)� c(t)

• Two boundary conditions: (i) k(0) > 0 and (ii) transversality condition.

• Usual saddle path dynamics.
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Transversality Condition

• Planner’s transversality condition in per effective worker terms

lim
T!1

e�⇢̂Tu0(c(T ))k(T )  0

• For future reference, recall u0(c(t)) = �(t) and multipliers satisfy

�̇(t)

�(t)
= ⇢̂� f 0(k(t)) + �̂

• Integrating forward over [0, T ] we get

�(T ) = �(0) exp
⇣
⇢̂T �

Z T

0
(f 0(k(s))� �̂) ds

⌘

• Since �(0) > 0, the planner’s transversality condition can be written

lim
T!1

exp
⇣
�

Z T

0
(f 0(k(s))� �̂) ds

⌘
k(T )  0
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Long Run Outcomes

• Steady state given by

f 0(k⇤) = ⇢̂+ �̂ = ⇢+ ✓g + �

and then
c⇤ = f(k⇤)� �̂k⇤ = f(k⇤)� (� + g + n)k⇤

• Balanced growth paths
K(t)

L(t)
= k⇤A(t)

and
Y (t)

L(t)
= y⇤A(t)
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Decentralization

• Let the final good be the numeraire.

• Representative household

– many identical households
– initial size L(0) = 1 growing at rate n
– endowed with initial net assets A(0)
– takes wage rate w(t) and real return on assets r(t) as given

• Representative firm

– identical technology Y = F (K,AL)
– indeterminate number of firms, since constant returns to scale
– take wage w(t) and rental rate of capital R(t) as given
– choose labor and capital demand to max profits
– owned by households, but constant returns to scale + competitive factor

prices ) zero economic profits so nothing left to distribute to owners
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Representative Household

• Consumption per worker x(t) ⌘ C(t)/L(t) = c(t)A(t).

• Intertemporal utility

U =

Z 1

0
e�⇢t u(x(t)) ent dt

• Standard interpretation: dynastic preferences, common discount rate ⇢.

• Flow budget constraint in terms of net assets

Ȧ(t) = r(t)A(t) + w(t)L(t)� C(t)

• Let a(t) ⌘ A(t)/L(t) denote net assets per worker

ȧ(t) = (r(t)� n)a(t) + w(t)� x(t)

• Net assets can be negative, in which case household is borrowing.
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Representative Household

• Could then have ‘chain-letter’ or ‘Ponzi’ scheme where household services
existing debt by taking on new debt, driving consumption arbitrarily high.

• If such schemes were allowed, household does not face a meaningful
budget constraint and optimization problem is degenerate.

• Can deal with this problem in several ways:

(i) rule out borrowing, impose a(t) � 0
(ii) allow borrowing up to some ‘natural debt limit’
(iii) rule out Ponzi schemes directly

• Options (ii) and (iii) equivalent if natural debt limit correctly specified.

• We will focus on the latter.
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No Ponzi Game Condition

• Let p(t) denote the price of a unit of consumption at date t.

• In terms of the real return on assets r(t) this is

p(t) = exp
⇣
�

Z t

0
r(s) ds

⌘
,

ṗ(t)

p(t)
= �r(t)

(e.g., if r(t) = r all t then p(t) = e�rt)

• No Ponzi game condition is that, asymptotically, household must have net
assets with non-negative present value

lim
T!1

p(T )A(T ) � 0

or equivalently, in terms of net assets per worker

lim
T!1

exp
⇣
�

Z T

0
(r(s)� n) ds

⌘
a(T ) � 0
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Aside: Intertemporal Budget Constraint

• Consider a finite horizon t 2 [0, T ].

• Write flow budget constraint in terms of p(t)

ṗ(t)A(t) + p(t)Ȧ(t)| {z }
= d

dtp(t)A(t)

= p(t)(w(t)L(t)� C(t))

• Integrating forward over [0, T ] we get

p(T )A(T ) +

Z T

0
p(t)C(t) dt = A(0) +

Z T

0
p(t)w(t)L(t) dt

(where implicitly p(0) = 1)

• Taking the limit T ! 1 and imposing the no Ponzi game condition we
get the intertemporal budget constraint

Z 1

0
p(t)C(t) dt = A(0) +

Z 1

0
p(t)w(t)L(t) dt
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Representative Household

• Putting all this together, the household’s problem is to maximize

U =

Z 1

0
e�(⇢�n)t u(x(t)) dt

subject to the flow budget constraint, in per worker terms

ȧ(t) = (r(t)� n)a(t) + w(t)� x(t)

and the no Ponzi game condition

lim
T!1

exp
⇣
�

Z T

0
(r(s)� n) ds

⌘
a(T ) � 0

which together imply the intertemporal budget constraint.

• Current-value Hamiltonian for this problem

H(x, a,�) = u(x) + �((r � n)a+ w � x)
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Representative Household

• Current-value Hamiltonian for this problem

H(x, a,�) = u(x) + �((r � n)a+ w � x)

• Key optimality conditions

Hx = 0, Ha = (⇢� n)�� �̇, H� = ȧ

along with the transversality condition

lim
T!1

e�(⇢�n)T�(T )a(T ) = 0

• Calculating the derivatives of the Hamiltonian

Hx = u0(x)� �

Ha = �(r � n)

H� = (r � n)a+ w � x
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Representative Household

• Eliminating the multipliers �(t) in the usual way we get

ẋ(t)

x(t)
= E(x(t))⇥ (r(t)� ⇢)

• With the usual constant elasticity specification E(x) = 1/✓ and writing
consumption per worker x(t) = c(t)A(t) this simplifies to

ċ(t)

c(t)
=

r(t)� ⇢� ✓g

✓

analogous to the corresponding condition for the planner.

• Notice that the household’s multipliers satisfy

�(t) = �(0) exp
⇣
�

Z t

0
(r(s)� ⇢) ds

⌘

We can use this to examine more closely the connection between the no
Ponzi condition and the household’s transversality condition.
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NPG vs. TVC

• No Ponzi condition

lim
T!1

exp
⇣
�

Z T

0
(r(s)� n) ds

⌘
a(T ) � 0 (NPG)

• Transversality condition, having substituted out �(t), can be written

lim
T!1

exp
⇣
�

Z T

0
(r(s)� n) ds

⌘
a(T )  0 (TVC)

• The former is a primitive, part of the household’s budget constraint.

• The latter is one of the household’s optimality conditions.

• Notice that if the TVC is satisfied as an equality, the NPG is satisfied too.

• The planner has a TVC but does not face an NPG because the planner
faces resource constraints, not budget constraints.
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Assets and Capital Market

• In principle, households can hold portfolio of physical capital and bonds.

• But no risk. All assets perfect substitutes. Degenerate portfolio problem.

• Market clearing will imply

K(t) = a(t)L(t)

• And by no-arbitrage, return on any asset actually held must be

r(t) = R(t)� �

where R(t) is the rental rate for physical capital.
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Representative Firm

• Taking w and R as given choose L and K to max profits

F (K,AL)� wL�RK

• In terms of capital per effective worker, k ⌘ K/AL, factor prices satisfy

R = f 0(k)

and
w = (f(k)� f 0(k)k)A
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Competitive Equilibrium

• A competitive equilibrium is a system of prices and quantities such that:

(i) the representative household maximizes utility, taking prices as given

(ii) the representative firm maximizes profits, taking prices as given

(iii) markets clear

• Finding a competitive equilibrium equivalent to solving planning problem.
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Equivalence to Planning Problem

• Household consumption Euler equation

ċ(t)

c(t)
=

r(t)� ⇢� ✓g

✓

• At r(t) = R(t)� � and R(t) = f 0(k(t)) this coincides with the planner’s

ċ(t)

c(t)
=

f 0(k(t))� � � ⇢� ✓g

✓

• Using growth adjusted parameters ⇢̂ ⌘ ⇢� n� (1� ✓) > 0 and
�̂ ⌘ � + g + n this is the same as

ċ(t)

c(t)
=

f 0(k(t))� �̂ � ⇢̂

✓
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Equivalence with Planning Problem

• Household flow budget constraint

ȧ(t) = (r(t)� n)a(t) + w(t)� x(t)

• At a(t) = K(t)/L(t) = k(t)A(t) and x(t) = c(t)A(t), substituting out
factor prices, R(t) = f 0(k(t)) & w(t) = (f(k(t))� f 0(k(t))k(t))A(t) gives

⇣ k̇(t)
k(t)

+ g
⌘
k(t)A(t)

=
⇣
f 0(k(t))� � � n

⌘
k(t)A(t) + (f(k(t))� f 0(k(t))k(t))A(t)� c(t)A(t)

• Simplifying we get

k̇(t) = f(k(t))� �̂k(t)� c(t), �̂ ⌘ � + g + n

Coincides with planner’s resource constraint in per effective worker terms.
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Equivalence with Planning Problem

• Household transversality condition

lim
T!1

exp
⇣
�

Z T

0
(r(s)� n) ds

⌘
a(T ) = 0

• At r(t) = f 0(k(t))� � and a(t) = K(t)/L(t) = k(t)A(t) with �̂ ⌘ � + g + n
this coincides with the planner’s transversality condition

lim
T!1

exp
⇣
�

Z T

0
(f 0(k(s))� �̂) ds

⌘
k(T ) = 0

• In short, given an initial condition k(0) > 0, a path c(t), k(t) that satisfies
the planner’s consumption Euler equation, resource constrain, and
transversality condition is also a competitive equilibrium.

• Given quantities c(t), k(t) recover supporting prices w(t), r(t) and p(t).
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Implications for Prices

• On balanced growth path, rental rate and real interest rate constant

R⇤ = f 0(k⇤) = ⇢̂+ �̂ = ⇢+ ✓g + �

and hence
r⇤ = f 0(k⇤)� � = ⇢+ ✓g

Key intuition: High ✓ (low intertemporal elasticity of substitution)
implies household needs more compensation to accept growth g.

• So can also write consumption Euler equation

ċ(t)

c(t)
=

r(t)� r⇤

✓

• On balanced growth path, wages grow with productivity

w(t) = (f(k⇤)� f 0(k⇤)k⇤)A(t)
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Outline

1. Comparative dynamics: worked examples
Decrease in discount rate ⇢.
Increase in productivity A

2. Balanced Growth
Preferences consistent with balanced growth

3. Decentralization
Equivalence to planning problem
Distortions: An example
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Distortions: An Example

• Consider a uniform distortionary tax ⌧ on the use of capital with tax
revenues rebated lump sum to representative household.

• Representative firm now hires capital until

(1 + ⌧)R = f 0(k)

with wages
w = (f(k)� f 0(k)k)A

• Representative household faces interest rate r = R� �. On balanced
growth path r = ⇢+ ✓g. Steady state capital per effective worker given by

(1 + ⌧)(⇢+ ✓g + �) = f 0(k⇤) )
dk⇤

d⌧
=

1

1 + ⌧

f 0(k⇤)

f 00(k⇤)
< 0

• Hence steady state output per effective worker

y⇤ = f(k⇤) )
dy⇤

d⌧
=

1

1 + ⌧

f 0(k⇤)2

f 00(k⇤)
< 0
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Distortions: An Example

• Suppose f(k) = k↵ and consider two countries identical except for ⌧ .
Long run relative capital per effective worker would then be

k⇤1
k⇤2

=
⇣1 + ⌧2
1 + ⌧1

⌘ 1
1�↵

• Long run relative output per effective worker would then be

y⇤1
y⇤2

=
⇣1 + ⌧2
1 + ⌧1

⌘ ↵
1�↵

• For a number like ↵ = 1/3, even a 9-fold difference in distortions would
only lead to a 3-fold difference in relative output.

• Once again, strongly diminishing returns to capital limit the ability of the
neoclassical growth model to generate large cross country variation.

(But if we could believe ↵ = 2/3, then a 9-fold difference in distortions
would lead to a much larger 81-fold difference in relative output...)
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Next class

• Dynamic general equilibrium theory.

• Aggregation and the representative agent.
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Homework

• For simplicity suppose constant A and L = 1. Suppose the representative
consumer maximizes

U =

Z 1

0
e�⇢t u(c(t)) dt, u(c) =

c1�✓
� 1

1� ✓

subject to the intertemporal budget constraint
Z 1

0
p(t)c(t) dt = a(0) +

Z 1

0
p(t)w(t) dt

Set this problem up as a Lagrangian with single time-invariant multipler.

• Check. Use the Lagrangian to derive the consumption Euler equation

ċ(t)

c(t)
=

r(t)� ⇢

✓
, r(t) = �

ṗ(t)

p(t)

(i.e., without the need to use a Hamiltonian)
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