Advanced Macroeconomics

Lecture 4: growth theory and dynamic optimization, part three

Chris Edmond

1st Semester 2019

This class

- Stability of *systems* of difference equation
 - eigenvalues, eigenvectors etc
 - 'diagonalizing' systems of difference equations
 - implications for stability of linear dynamic systems

Recall scalar case

• Scalar linear difference equation

$$x_{t+1} = ax_t + b,$$
 x_0 given
• If $a \neq 1$

$$x_t = \bar{x} + a^t (x_0 - \bar{x}), \qquad t \ge 0$$

with steady state

$$\bar{x} = (1-a)^{-1} b$$

System of linear difference equations

• Now let's consider a *system* of linear difference equations

$$\left(\begin{array}{c}x_{1,t+1}\\x_{2,t+1}\end{array}\right) = \left(\begin{array}{c}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right)\left(\begin{array}{c}x_{1,t}\\x_{2,t}\end{array}\right) + \left(\begin{array}{c}b_{1}\\b_{2}\end{array}\right)$$

or in matrix notation

 $\boldsymbol{x}_{t+1} = \boldsymbol{A} \boldsymbol{x}_t + \boldsymbol{b}$

• Analogous steady state

 $\bar{\boldsymbol{x}} = (\boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{b}$

(supposing the inverse is well-defined, more on this soon)

Systems of linear difference equations

• Analogous solution

$$oldsymbol{x}_t = oldsymbol{ar{x}} + oldsymbol{A}^t (oldsymbol{x}_0 - oldsymbol{ar{x}})$$

- Scalar dynamics characterized by behavior of a^t
- System dynamics characterized by behavior of A^t
- But matrix power A^t is a complicated object. In general it is *not* the matrix of powers

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^t \neq \begin{pmatrix} a_{11}^t & a_{12}^t \\ a_{21}^t & a_{22}^t \end{pmatrix}$$

How then do we determine behavior of A^t ?

Uncoupled systems

• Consider *uncoupled* system

$$\left(\begin{array}{c} x_{1,t+1} \\ x_{2,t+1} \end{array}\right) = \left(\begin{array}{c} a_{11} & 0 \\ 0 & a_{22} \end{array}\right) \left(\begin{array}{c} x_{1,t} \\ x_{2,t} \end{array}\right) + \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right)$$

Coefficient matrix A is *diagonal*, no feedback between components

• In this special case it *is* true that

$$\left(\begin{array}{cc}a_{11}&0\\0&a_{22}\end{array}\right)^t = \left(\begin{array}{cc}a_{11}^t&0\\0&a_{22}^t\end{array}\right)$$

• So, in this special case, the behavior of A^t simply determined by magnitudes of a_{11} and a_{22}

Diagonalizing a system

- Most systems of interest are coupled, matrix \boldsymbol{A} not diagonal
- But large class of matrixes can be *diagonalized*. For these matrixes

 $V^{-1}AV = \Lambda$

where Λ is a diagonal matrix with entries equal to the *eigenvalues* of A and V is a matrix which stacks the corresponding *eigenvectors* (more on these shortly)

• We then make the change of variables $\boldsymbol{z}_t \equiv \boldsymbol{V}^{-1}(\boldsymbol{x}_t - \bar{\boldsymbol{x}})$ and study

$$V \boldsymbol{z}_{t+1} = \boldsymbol{A} V \boldsymbol{z}_t$$

that is, the uncoupled system

$$\boldsymbol{z}_{t+1} = \boldsymbol{V}^{-1} \boldsymbol{A} \boldsymbol{V} \boldsymbol{z}_t = \boldsymbol{\Lambda} \boldsymbol{z}_t$$

Diagonalizing a system

• Solving the uncoupled system

$$\boldsymbol{z}_t = \boldsymbol{\Lambda}^t \boldsymbol{z}_0$$

or in terms of the original coordinates

$$oldsymbol{x}_t = oldsymbol{ar{x}} + oldsymbol{V} oldsymbol{z}_t = oldsymbol{ar{x}} + oldsymbol{V} oldsymbol{\Lambda}^t oldsymbol{V}^{-1} (oldsymbol{x}_0 - oldsymbol{ar{x}})$$

- These are just linear combinations of λ^t terms from diagonal of $\mathbf{\Lambda}^t$
- In short, eigenvalues λ of \boldsymbol{A} determine stability of \boldsymbol{x}_t
- So what are these eigenvalues?

Eigenvalues and eigenvectors

If A is an $n \times n$ matrix, then a non-zero $n \times 1$ vector x is an eigenvector of A if Ax is a scalar multiple of x

 $Ax = \lambda x$

for some scalar λ . We then say λ is an eigenvalue of A and x is an eigenvector corresponding to λ .

Geometric interpretation

In general Ax is not proportional to x. But if it is, then λ is an eigenvalue of A and x is an eigenvector of A corresponding to λ .

Magnitudes of eigenvalues

$Ax = \lambda x$

• So a scalar λ is an eigenvalue of a square matrix \boldsymbol{A} iff

 $M \equiv A - \lambda I$

is singular

- \Leftrightarrow there are solutions to Mx = 0 other than x = 0
- \Leftrightarrow the *determinant* of M is zero
- Consider scalar a. Let $m \equiv a \lambda$. When does mx = 0 have solutions other than x = 0? When m = 0. When is m = 0? When $\lambda = a$. For scalar a, single eigenvalue equal to coefficient itself

Determinant: main idea

Absolute value of determinant of A equals area formed from columns a_1, a_2 of A. Determinant equals zero if columns linearly dependent (in which case matrix is *singular*, parallelogram collapses to a line).

Finding eigenvalues

- The λ are the numbers that make $M = A \lambda I$ singular
- Matrix M singular when its determinant is zero. In 2-by-2 case

$$\det(\mathbf{M}) = \det \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = m_{11}m_{22} - m_{12}m_{21}$$

• Therefore

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix}$$

$$= (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21}$$

$$= \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21}$$

Characteristic polynomial

• So for a 2-by-2 \boldsymbol{A} , the eigenvalues λ solve a quadratic equation

$$p(\lambda) \equiv \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$$

(the 'characteristic polynomial')

• Two roots. From the quadratic formula

$$\lambda_1, \lambda_2 = \frac{(a_{11} + a_{22}) \pm \sqrt{(a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21})}}{2}$$

If **A** diagonal, roots are simply $\lambda_1 = a_{11}$ and $\lambda_2 = a_{22}$

- More generally nth order polynomial, n roots. Roots may be real or complex, repeated or distinct
- Repeated roots may lead to non-diagonalizable ('defective') matrices, i.e., have less than n linearly independent eigenvectors

Finding eigenvectors

- Suppose λ is an eigenvalue of \boldsymbol{A} (from characteristic polynomial)
- Find *eigenvector* \boldsymbol{x} associated with λ by solving

$$(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{x} = 0$$

• In 2-by-2 case

$$\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Here λ is fixed and we solve for \boldsymbol{x}

• Eigenvector not unique, if \boldsymbol{x} is an eigenvector associated with λ then so is $c\boldsymbol{x}$ for any $c \neq 0$. Needs a normalization.

Implications for stability

• Recall

$$oldsymbol{x}_t = oldsymbol{ar{x}} + oldsymbol{V}oldsymbol{z}_t = oldsymbol{ar{x}} + oldsymbol{V}oldsymbol{\Lambda}^toldsymbol{z}_0$$

• That is, linear combinations of eigenvalues of the form

$$x_{1,t} = \bar{x}_1 + v_{11}\lambda_1^t z_{1,0} + v_{12}\lambda_2^t z_{2,0}$$

$$x_{2,t} = \bar{x}_2 + v_{21}\lambda_1^t z_{1,0} + v_{22}\lambda_2^t z_{2,0}$$

• Stable if all $|\lambda| < 1$, unstable otherwise. Note initial conditions

$$z_{1,0} = \frac{v_{22}(x_{1,0} - \bar{x}_1) - v_{12}(x_{2,0} - \bar{x}_2)}{v_{11}v_{22} - v_{12}v_{21}}$$
$$z_{2,0} = \frac{v_{11}(x_{2,0} - \bar{x}_2) - v_{21}(x_{1,0} - \bar{x}_1)}{v_{11}v_{22} - v_{12}v_{21}}$$

• An unstable λ dominates unless initial conditions are 'just right'.

Sink (all $|\lambda| < 1$)

For any initial z_0 , system $z_t = \Lambda^t z_0 \to 0$ (the origin) hence $x_t \to \bar{x}$. Example shown here has both roots $\lambda_1, \lambda_2 \in (0, 1)$.

Source (all $|\lambda| > 1$)

For any initial $z_0 \neq 0$, system $z_t = \Lambda^t z_0$ diverges hence x_t diverges too. Example shown here has both roots $\lambda_1, \lambda_2 > 1$.

Saddle (some $|\lambda| > 1$)

System $\boldsymbol{z_t} = \boldsymbol{\Lambda}^t \boldsymbol{z_0}$ diverges if any weight given to unstable roots. Example here has $0 < \lambda_1 < 1 < \lambda_2$ and $\boldsymbol{z_t} = \boldsymbol{\Lambda}^t \boldsymbol{z_0} \to \boldsymbol{0}$ iff $\boldsymbol{z_{2,0}} = 0$.

Saddle (some $|\lambda| > 1$)

- Unstable eigenvalue dominates unless initial conditions 'just right'
- As in the last example, suppose

 $0 < \lambda_1 < 1 < \lambda_2$

- Then system explodes except in knife-edge case $z_{2,0} = 0$
- In terms of original coordinates, a line

$$z_{2,0} = 0 \qquad \Leftrightarrow \qquad x_{2,0} = \bar{x}_2 + \frac{v_{21}}{v_{11}}(x_{1,0} - \bar{x}_1)$$

If system starts on this line ('*stable arm*','*stable manifold*') then converges to steady state. Diverges for any other initial conditions

Stable arm

Some key properties of eigenvalues

• Determinant of *n*-by-*n* matrix is product of eigenvalues

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i, \qquad \det(c\mathbf{A}) = c^n \det(\mathbf{A})$$

• Trace of n-by-n matrix is sum of eigenvalues

$$\operatorname{tr}(\boldsymbol{A}) \equiv \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i, \quad \operatorname{tr}(c\boldsymbol{A}) = c \operatorname{tr}(\boldsymbol{A})$$

Geometric intuition

Geometric intuition

Note $det(\Lambda') = det(\Lambda) + tr(\Lambda)\varepsilon + \varepsilon^2$, in this sense the trace of a matrix is akin to the *derivative* of the determinant of that matrix.

Summary for 2-by-2 case

• Determinant

$$\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21} = \lambda_1\lambda_2$$

• Trace

$$\operatorname{tr}(\boldsymbol{A}) = a_{11} + a_{22} = \lambda_1 + \lambda_2$$

• Characteristic polynomial

$$p(\lambda) = \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21}$$

$$= \lambda^2 - \operatorname{tr}(\boldsymbol{A})\lambda + \det(\boldsymbol{A})$$

$$= (\lambda - \lambda_1)(\lambda - \lambda_2)$$

• We will use these properties to characterize magnitudes of eigenvalues and hence stability of dynamical system

Nonlinear dynamical systems

• Consider system of *nonlinear* difference equations

$$\left(\begin{array}{c} x_{1,t+1} \\ x_{2,t+1} \end{array}\right) = \left(\begin{array}{c} f_1(x_{1,t}, x_{2,t}) \\ f_2(x_{1,t}, x_{2,t}) \end{array}\right)$$

or in vector notation

$$\boldsymbol{x}_{t+1} = \boldsymbol{f}(\boldsymbol{x}_t)$$

• Steady states, if any, are fixed points

 $ar{m{x}} = m{f}(ar{m{x}})$

• Local stability of \bar{x} depends on eigenvalues of Jacobian matrix

$$\boldsymbol{f}'(\boldsymbol{x}) \equiv \begin{pmatrix} \frac{\partial}{\partial x_1} f_1(x_1, x_2) & \frac{\partial}{\partial x_2} f_1(x_1, x_2) \\ \frac{\partial}{\partial x_1} f_2(x_1, x_2) & \frac{\partial}{\partial x_2} f_2(x_1, x_2) \end{pmatrix}$$

evaluated at $\boldsymbol{x} = \bar{\boldsymbol{x}}$

Next class

- Application to the Ramsey-Cass-Koopmans growth model
 - a system of nonlinear difference equations
 - log-linearization (convenient local approximation)
 - solving model by method of undetermined coefficients
 - examples and introduction to Matlab