Advanced Macroeconomics

Lecture 4: growth theory and dynamic optimization, part three

Chris Edmond

1st Semester 2019

This class

- Stability of systems of difference equation
- eigenvalues, eigenvectors etc
- 'diagonalizing' systems of difference equations
- implications for stability of linear dynamic systems

Recall scalar case

- Scalar linear difference equation

$$
x_{t+1}=a x_{t}+b, \quad x_{0} \text { given }
$$

- If $a \neq 1$

$$
x_{t}=\bar{x}+a^{t}\left(x_{0}-\bar{x}\right), \quad t \geq 0
$$

with steady state

$$
\bar{x}=(1-a)^{-1} b
$$

System of linear difference equations

- Now let's consider a system of linear difference equations

$$
\binom{x_{1, t+1}}{x_{2, t+1}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x_{1, t}}{x_{2, t}}+\binom{b_{1}}{b_{2}}
$$

or in matrix notation

$$
\boldsymbol{x}_{t+1}=\boldsymbol{A} \boldsymbol{x}_{t}+\boldsymbol{b}
$$

- Analogous steady state

$$
\overline{\boldsymbol{x}}=(\boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{b}
$$

(supposing the inverse is well-defined, more on this soon)

Systems of linear difference equations

- Analogous solution

$$
\boldsymbol{x}_{t}=\overline{\boldsymbol{x}}+\boldsymbol{A}^{t}\left(\boldsymbol{x}_{0}-\overline{\boldsymbol{x}}\right)
$$

- Scalar dynamics characterized by behavior of a^{t}
- System dynamics characterized by behavior of \boldsymbol{A}^{t}
- But matrix power \boldsymbol{A}^{t} is a complicated object. In general it is not the matrix of powers

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)^{t} \neq\left(\begin{array}{cc}
a_{11}^{t} & a_{12}^{t} \\
a_{21}^{t} & a_{22}^{t}
\end{array}\right)
$$

How then do we determine behavior of \boldsymbol{A}^{t} ?

Uncoupled systems

- Consider uncoupled system

$$
\binom{x_{1, t+1}}{x_{2, t+1}}=\left(\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right)\binom{x_{1, t}}{x_{2, t}}+\binom{b_{1}}{b_{2}}
$$

Coefficient matrix \boldsymbol{A} is diagonal, no feedback between components

- In this special case it is true that

$$
\left(\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right)^{t}=\left(\begin{array}{cc}
a_{11}^{t} & 0 \\
0 & a_{22}^{t}
\end{array}\right)
$$

- So, in this special case, the behavior of \boldsymbol{A}^{t} simply determined by magnitudes of a_{11} and a_{22}

Diagonalizing a system

- Most systems of interest are coupled, matrix \boldsymbol{A} not diagonal
- But large class of matrixes can be diagonalized. For these matrixes

$$
\boldsymbol{V}^{-1} \boldsymbol{A} \boldsymbol{V}=\boldsymbol{\Lambda}
$$

where $\boldsymbol{\Lambda}$ is a diagonal matrix with entries equal to the eigenvalues of \boldsymbol{A} and \boldsymbol{V} is a matrix which stacks the corresponding eigenvectors (more on these shortly)

- We then make the change of variables $\boldsymbol{z}_{t} \equiv \boldsymbol{V}^{-1}\left(\boldsymbol{x}_{t}-\overline{\boldsymbol{x}}\right)$ and study

$$
\boldsymbol{V} \boldsymbol{z}_{t+1}=\boldsymbol{A} \boldsymbol{V} \boldsymbol{z}_{t}
$$

that is, the uncoupled system

$$
\boldsymbol{z}_{t+1}=\boldsymbol{V}^{-1} \boldsymbol{A} \boldsymbol{V} \boldsymbol{z}_{t}=\boldsymbol{\Lambda} \boldsymbol{z}_{t}
$$

Diagonalizing a system

- Solving the uncoupled system

$$
\boldsymbol{z}_{t}=\boldsymbol{\Lambda}^{t} \boldsymbol{z}_{0}
$$

or in terms of the original coordinates

$$
\boldsymbol{x}_{t}=\overline{\boldsymbol{x}}+\boldsymbol{V} \boldsymbol{z}_{t}=\overline{\boldsymbol{x}}+\boldsymbol{V} \boldsymbol{\Lambda}^{t} \boldsymbol{V}^{-1}\left(\boldsymbol{x}_{0}-\overline{\boldsymbol{x}}\right)
$$

- These are just linear combinations of λ^{t} terms from diagonal of $\boldsymbol{\Lambda}^{t}$
- In short, eigenvalues λ of \boldsymbol{A} determine stability of \boldsymbol{x}_{t}
- So what are these eigenvalues?

Eigenvalues and eigenvectors

If \boldsymbol{A} is an $n \times n$ matrix, then a non-zero $n \times 1$ vector \boldsymbol{x} is an eigenvector of \boldsymbol{A} if $\boldsymbol{A} \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}

$$
\boldsymbol{A x}=\lambda \boldsymbol{x}
$$

for some scalar λ. We then say λ is an eigenvalue of \boldsymbol{A} and \boldsymbol{x} is an eigenvector corresponding to λ.

Geometric interpretation

In general $\boldsymbol{A} \boldsymbol{x}$ is not proportional to \boldsymbol{x}. But if it is, then λ is an eigenvalue of \boldsymbol{A} and \boldsymbol{x} is an eigenvector of \boldsymbol{A} corresponding to λ.

Magnitudes of eigenvalues

$\boldsymbol{A x}=\lambda \boldsymbol{x}$

- So a scalar λ is an eigenvalue of a square matrix \boldsymbol{A} iff

$$
M \equiv \boldsymbol{A}-\lambda \boldsymbol{I}
$$

is singular
\Leftrightarrow there are solutions to $\boldsymbol{M x}=\mathbf{0}$ other than $\boldsymbol{x}=\mathbf{0}$
\Leftrightarrow the determinant of \boldsymbol{M} is zero

- Consider scalar a. Let $m \equiv a-\lambda$. When does $m x=0$ have solutions other than $x=0$? When $m=0$. When is $m=0$? When $\lambda=a$. For scalar a, single eigenvalue equal to coefficient itself

Determinant: main idea

Absolute value of determinant of \boldsymbol{A} equals area formed from columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{\mathbf{2}}$ of \boldsymbol{A}. Determinant equals zero if columns linearly dependent (in which case matrix is singular, parallelogram collapses to a line).

Finding eigenvalues

- The λ are the numbers that make $\boldsymbol{M}=\boldsymbol{A}-\lambda \boldsymbol{I}$ singular
- Matrix \boldsymbol{M} singular when its determinant is zero. In 2-by-2 case

$$
\operatorname{det}(\boldsymbol{M})=\operatorname{det}\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)=m_{11} m_{22}-m_{12} m_{21}
$$

- Therefore

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\operatorname{det}\left(\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right) \\
& =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12} a_{21} \\
& =\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+a_{11} a_{22}-a_{12} a_{21}
\end{aligned}
$$

Characteristic polynomial

- So for a 2 -by- $2 \boldsymbol{A}$, the eigenvalues λ solve a quadratic equation

$$
p(\lambda) \equiv \lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+a_{11} a_{22}-a_{12} a_{21}=0
$$

(the 'characteristic polynomial')

- Two roots. From the quadratic formula

$$
\lambda_{1}, \lambda_{2}=\frac{\left(a_{11}+a_{22}\right) \pm \sqrt{\left(a_{11}+a_{22}\right)^{2}-4\left(a_{11} a_{22}-a_{12} a_{21}\right)}}{2}
$$

If \boldsymbol{A} diagonal, roots are simply $\lambda_{1}=a_{11}$ and $\lambda_{2}=a_{22}$

- More generally nth order polynomial, n roots. Roots may be real or complex, repeated or distinct
- Repeated roots may lead to non-diagonalizable ('defective') matrices, i.e., have less than n linearly independent eigenvectors

Finding eigenvectors

- Suppose λ is an eigenvalue of \boldsymbol{A} (from characteristic polynomial)
- Find eigenvector \boldsymbol{x} associated with λ by solving

$$
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=0
$$

- In 2-by-2 case

$$
\left(\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

Here λ is fixed and we solve for \boldsymbol{x}

- Eigenvector not unique, if \boldsymbol{x} is an eigenvector associated with λ then so is $c \boldsymbol{x}$ for any $c \neq 0$. Needs a normalization.

Implications for stability

- Recall

$$
\boldsymbol{x}_{t}=\overline{\boldsymbol{x}}+\boldsymbol{V} \boldsymbol{z}_{t}=\overline{\boldsymbol{x}}+\boldsymbol{V} \boldsymbol{\Lambda}^{t} \boldsymbol{z}_{0}
$$

- That is, linear combinations of eigenvalues of the form

$$
\begin{aligned}
& x_{1, t}=\bar{x}_{1}+v_{11} \lambda_{1}^{t} z_{1,0}+v_{12} \lambda_{2}^{t} z_{2,0} \\
& x_{2, t}=\bar{x}_{2}+v_{21} \lambda_{1}^{t} z_{1,0}+v_{22} \lambda_{2}^{t} z_{2,0}
\end{aligned}
$$

- Stable if all $|\lambda|<1$, unstable otherwise. Note initial conditions

$$
\begin{aligned}
z_{1,0} & =\frac{v_{22}\left(x_{1,0}-\bar{x}_{1}\right)-v_{12}\left(x_{2,0}-\bar{x}_{2}\right)}{v_{11} v_{22}-v_{12} v_{21}} \\
z_{2,0} & =\frac{v_{11}\left(x_{2,0}-\bar{x}_{2}\right)-v_{21}\left(x_{1,0}-\bar{x}_{1}\right)}{v_{11} v_{22}-v_{12} v_{21}}
\end{aligned}
$$

- An unstable λ dominates unless initial conditions are 'just right'.

Sink (all $|\lambda|<1$)

For any initial \boldsymbol{z}_{0}, system $\boldsymbol{z}_{\boldsymbol{t}}=\boldsymbol{\Lambda}^{t} \boldsymbol{z}_{0} \rightarrow \mathbf{0}$ (the origin) hence $\boldsymbol{x}_{t} \rightarrow \overline{\boldsymbol{x}}$. Example shown here has both roots $\lambda_{1}, \lambda_{2} \in(0,1)$.

Source (all $|\lambda|>1$)

For any initial $\boldsymbol{z}_{0} \neq \mathbf{0}$, system $\boldsymbol{z}_{\boldsymbol{t}}=\boldsymbol{\Lambda}^{t} \boldsymbol{z}_{0}$ diverges hence \boldsymbol{x}_{t} diverges too.
Example shown here has both roots $\lambda_{1}, \lambda_{2}>1$.

Saddle (some $|\lambda|>1$)

System $\boldsymbol{z}_{t}=\boldsymbol{\Lambda}^{t} \boldsymbol{z}_{0}$ diverges if any weight given to unstable roots. Example here has $0<\lambda_{1}<1<\underset{20}{\lambda_{2}}$ and $\boldsymbol{z}_{\boldsymbol{t}}=\boldsymbol{\Lambda}^{t} \boldsymbol{z}_{0} \rightarrow \mathbf{0}$ iff $z_{2,0}=0$.

Saddle (some $|\lambda|>1$)

- Unstable eigenvalue dominates unless initial conditions 'just right'
- As in the last example, suppose

$$
0<\lambda_{1}<1<\lambda_{2}
$$

- Then system explodes except in knife-edge case $z_{2,0}=0$
- In terms of original coordinates, a line

$$
z_{2,0}=0 \quad \Leftrightarrow \quad x_{2,0}=\bar{x}_{2}+\frac{v_{21}}{v_{11}}\left(x_{1,0}-\bar{x}_{1}\right)
$$

If system starts on this line ('stable arm','stable manifold') then converges to steady state. Diverges for any other initial conditions

Stable arm

Some key properties of eigenvalues

- Determinant of n-by- n matrix is product of eigenvalues

$$
\operatorname{det}(\boldsymbol{A})=\prod_{i=1}^{n} \lambda_{i}, \quad \operatorname{det}(c \boldsymbol{A})=c^{n} \operatorname{det}(\boldsymbol{A})
$$

- Trace of n-by- n matrix is sum of eigenvalues

$$
\operatorname{tr}(\boldsymbol{A}) \equiv \sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}, \quad \operatorname{tr}(c \boldsymbol{A})=c \operatorname{tr}(\boldsymbol{A})
$$

Geometric intuition

Geometric intuition

Note $\operatorname{det}\left(\boldsymbol{\Lambda}^{\prime}\right)=\operatorname{det}(\boldsymbol{\Lambda})+\operatorname{tr}(\boldsymbol{\Lambda}) \varepsilon+\varepsilon^{2}$, in this sense the trace of a matrix is akin to the derivative of the determinant of that matrix.

Summary for 2-by-2 case

- Determinant

$$
\operatorname{det}(\boldsymbol{A})=a_{11} a_{22}-a_{12} a_{21}=\lambda_{1} \lambda_{2}
$$

- Trace

$$
\operatorname{tr}(\boldsymbol{A})=a_{11}+a_{22}=\lambda_{1}+\lambda_{2}
$$

- Characteristic polynomial

$$
\begin{aligned}
p(\lambda) & =\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+a_{11} a_{22}-a_{12} a_{21} \\
& =\lambda^{2}-\operatorname{tr}(\boldsymbol{A}) \lambda+\operatorname{det}(\boldsymbol{A}) \\
& =\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)
\end{aligned}
$$

- We will use these properties to characterize magnitudes of eigenvalues and hence stability of dynamical system

Nonlinear dynamical systems

- Consider system of nonlinear difference equations

$$
\binom{x_{1, t+1}}{x_{2, t+1}}=\binom{f_{1}\left(x_{1, t}, x_{2, t}\right)}{f_{2}\left(x_{1, t}, x_{2, t}\right)}
$$

or in vector notation

$$
\boldsymbol{x}_{t+1}=\boldsymbol{f}\left(\boldsymbol{x}_{t}\right)
$$

- Steady states, if any, are fixed points

$$
\overline{\boldsymbol{x}}=\boldsymbol{f}(\overline{\boldsymbol{x}})
$$

- Local stability of $\overline{\boldsymbol{x}}$ depends on eigenvalues of Jacobian matrix

$$
\boldsymbol{f}^{\prime}(\boldsymbol{x}) \equiv\left(\begin{array}{cc}
\frac{\partial}{\partial x_{1}} f_{1}\left(x_{1}, x_{2}\right) & \frac{\partial}{\partial x_{2}} f_{1}\left(x_{1}, x_{2}\right) \\
\frac{\partial}{\partial x_{1}} f_{2}\left(x_{1}, x_{2}\right) & \frac{\partial}{\partial x_{2}} f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right)
$$

evaluated at $\boldsymbol{x}=\overline{\boldsymbol{x}}$

Next class

- Application to the Ramsey-Cass-Koopmans growth model
- a system of nonlinear difference equations
- log-linearization (convenient local approximation)
- solving model by method of undetermined coefficients
- examples and introduction to Matlab

