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This class

• Solow-Swan model in continuous time

– makes for simpler calculations
– greater transparency in calibration

• Implications and applications

– balanced growth path
– long-run effects of changes in savings rate
– golden rule
– speed of convergence
– examples
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Towards continuous time

• Period length � > 0 in units of calendar time

• Periods t = 0, �, 2�, 3�, . . .

• All flows multiplied by period length, so for example

Kt+� � Kt = It� � ��Kt

and

At+� = eg�At

Lt+� = en�Lt

(in anticipation of continuously-compounded growth rates)
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Towards continuous time
• Divide by � > 0

Kt+� � Kt

�
= It � �Kt

and

At+� � At

�
=

eg� � 1

�
At

Lt+� � Lt

�
=

en� � 1

�
Lt

• We now want to take limit as period length shrinks � ! 0.

Using l’Hôpital’s rule,

lim
�!0

ex� � 1

�
= x

(or can use ex� ⇡ 1 + x�)
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Continuous time limit
• Gives

K̇(t) ⌘ dK(t)

dt
= I(t) � �K(t)

and

Ȧ(t) ⌘ dA(t)

dt
= gA(t), L̇(t) ⌘ dL(t)

dt
= nL(t)

• Productivity A(t) and the labor force L(t) grow exponentially

Ȧ(t)

A(t)
= g ) A(t) = egtA(0)

L̇(t)

L(t)
= n ) L(t) = entL(0)
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Solow-Swan in continuous time

• Time t � 0

• Capital accumulation

K̇(t) = I(t) � �K(t)

• Exogenous productivity and labor force

Ȧ(t) = gA(t), L̇(t) = nL(t)

• Constant savings rate

I(t) = S(t) = sY (t) = sF (K(t), A(t)L(t))

• Aggregate production function Y = F (K, AL) satisfying the usual

assumptions
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Solow-Swan in continuous time

• Hence

K̇(t) = sF (K(t), A(t)L(t)) � �K(t)

• Define intensive variables as usual k ⌘ K/AL, y ⌘ Y/AL, y = f(k)
etc and note

k̇(t)

k(t)
=

K̇(t)

K(t)
� Ȧ(t)

A(t)
� L̇(t)

L(t)

• Hence in intensive form

k̇(t) = sf(k(t)) � (� + g + n)k(t) ⌘  (k(t))

An autonomous nonlinear differential equation in k(t) with

transition function  (k)
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Solow-Swan in continuous time
• Steady state k⇤

where k̇(t) = 0, i.e., solves usual condition

sf(k⇤) = (� + g + n)k⇤

• At k⇤
, sf 0(k⇤) is less than � + g + n, i.e.,  0(k⇤) < 0 [why?]

• Qualitative dynamics

k̇(t) > 0 , sf(k(t)) > (� + g + n)k(t)

, k(t) < k⇤

and

k̇(t) < 0 , sf(k(t)) < (� + g + n)k(t)

, k(t) > k⇤

• Converges k(t) ! k⇤
, steady state k⇤

is stable (for all k(0) > 0).
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Phase diagram

k(t)

k̇(t) =  (k(t))

k̇(t)

k⇤k(0)



Linear differential equation

• To understand these stability properties more systematically, let’s

begin with simple scalar linear differential equations, such as

ẋ(t) = �x(t) + b, x(0) given

• Steady state if � 6= 0

x⇤ = � b

�

• Can then write in deviations from steady state

ẋ(t) = �(x(t) � x⇤)

Notice that ẋ(t) ⌘ d
dtx(t) = d

dt(x(t) � x⇤) so ẋ(t) is also the time

derivative of the deviation from steady state
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Linear differential equation

• Stability properties determined by magnitude of coefficient �

• If � 6= 0

x(t) = x⇤ + e�t(x(0) � x⇤), t � 0

If � < 0 then x(t) converges (monotonically) to x⇤
as t ! 1. If

� > 0 then x(t) diverges to ±1 depending on sign of x(0) � x⇤

• If � = 0, no steady state and simply

x(t) = tb + x(0)

• In short steady state stable if � < 0 and unstable otherwise.

In linear system, local stability implies global stability
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Nonlinear differential equation
• Consider scalar nonlinear differential equation

ẋ(t) =  (x(t)), x(0) given

Steady states determined by

0 =  (x⇤)

May be many, or none

• Stability local to a steady state depends on sign of  0(x⇤)

• Approximate solution, local to x⇤

x(t) ⇡ x⇤ + e 
0(x⇤)t(x(0) � x⇤), t � 0

So that x(t) ! x⇤
if coefficient  0(x⇤) < 0
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Approximate Solow-Swan dynamics

• Exact nonlinear differential equation

k̇(t) = sf(k(t)) � (� + g + n)k(t) ⌘  (k(t))

• Approximate solution, local to k⇤

k(t) ⇡ k⇤ + e 
0(k⇤)t(k(0) � k⇤), t � 0

where

 0(k⇤) = sf 0(k⇤) � (� + g + n) < 0

• Weighted average of initial k(0) and steady state k⇤
with weight on

k(0) decreasing exponentially

13



Balanced growth path

• Asymptotically k(t) ! k⇤
and y(t) ! y⇤ = f(k⇤)

• Hence capital K(t), output Y (t) and consumption C(t) all

asymptotically grow at g + n

• Hence capital per worker K(t)/L(t), output per worker Y (t)/L(t)
and consumption per worker C(t)/L(t) all asymptotically grow at g

• Long run growth independent of savings rate s and independent of

initial conditions K(0), A(0), L(0).
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Changes in savings rate s
• Has level effect on k⇤

and hence on y⇤ and c⇤. How do we formally

determine this level effect? Use comparative statics

• Recall k⇤
solves

sf(k⇤) = (� + g + n)k⇤

• Implicitly determines k⇤
as a function of s. Write k⇤ = k(s) so

sf(k(s)) = (� + g + n)k(s)

• Differentiate both sides and rearrange

k0(s) = � f(k⇤)

sf 0(k⇤) � (� + g + n)
> 0

which is positive since sf 0(k⇤) < (� + g + n)

• In short, a permanent increase in the savings rate s permanently

increases k⇤
(but does not change long run growth)
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Golden rule
• Consumption c⇤ = c(s) via

c(s) = (1 � s)f(k(s)) = f(k(s)) � (� + g + n)k(s)

An increase in s may increase or decrease c(s)

• What level of s maximizes steady state c⇤ = c(s) ? First order

condition for this problem

c0(s) = 0 ,
h
f 0(k) � (� + g + n)

i
k0(s) = 0

Since k0(s) > 0 this requires

f 0(k) = � + g + n

• Choose s to make k(s) = k⇤
such that f 0(k⇤) = � + g + n.

Equivalently, so that

s =
f 0(k⇤)k⇤

f(k⇤)
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Speed of convergence
• Recall that speed of convergence depends on magnitude of

 0(k⇤) = sf 0(k⇤) � (� + g + n) < 0

• Can write this

 0(k⇤) =
sf 0(k⇤)k⇤

k⇤ � (� + g + n)

=
f 0(k⇤)k⇤

f(k⇤)
(� + g + n) � (� + g + n)

= �
✓

1 � f 0(k⇤)k⇤

f(k⇤)

◆
(� + g + n) < 0

• Speed of convergence determined by (i) the degree of concavity in

the production function and (ii) the effective depreciation rate
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Cobb-Douglas example

• Suppose aggregate production function

Y = F (K, AL) = K↵(AL)1�↵, 0 < ↵ < 1

so that in intensive form

y = f(k) = k↵

• In this special case, the elasticity of output with respect to capital

is constant

f 0(k)k

f(k)
= ↵

Consequently, the golden rule savings rate is just s = ↵
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Cobb-Douglas example

• Steady state capital

sk↵ = (� + g + n)k ) k⇤ =

✓
s

� + g + n

◆ 1
1�↵

• Steady state capital/output ratio

k⇤

y⇤
=

s

� + g + n
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Cobb-Douglas example

• Amusingly, for the Cobb-Douglas case the nonlinear differential

equation can be solved exactly. This relies on a simple trick

• It turns our that in the Cobb-Douglas case the Solow-Swan model

implies a linear differential equation in the capital/output ratio

• Let x(t) denote the capital/output ratio, which in this case is

x(t) ⌘ K(t)

Y (t)
=

k(t)

y(t)
= k(t)1�↵

with given initial condition

x(0) = k(0)1�↵ > 0
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Cobb-Douglas example
• So in this special case we have the linear differential equation

ẋ(t) = (1 � ↵)
h
s � (� + g + n)x(t)

i

• This has the exact solution

x(t) = e�tx(0) + (1 � e�t)x⇤, t � 0

where the steady state is

x⇤ =
k⇤

y⇤
=

s

� + g + n

and where the speed of adjustment is

� = �(1 � ↵)(� + g + n) < 0

(note, this is � =  0(k⇤), the derivative of the transition function

as per slide 17 above)
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Cobb-Douglas example

• Can then write the exact solution for k(t) = x(t)
1

1�↵ as

k(t) =
⇣
e�tk(0)1�↵ + (1 � e�t)k⇤1�↵

⌘ 1
1�↵

, t � 0

• Rapid convergence to k⇤
when the speed of adjustment coefficient

� = �(1 � ↵)(� + g + n) has large magnitude
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Next class

• Ramesy-Cass-Koopmans optimal growth model in discrete time

– optimal savings, not an exogenous constant

– intertemporal utility maximization
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