316-632 INTERNATIONAL MONETARY ECONOMICS

Chris Edmond 〈cpedmond@unimelb.edu.au〉

Aside on quantity and price indices with CES utility

Consider a static 2-good utility maximization problem of the form: maximize utility

$$
U\left(c_{1}, c_{2}\right)=V\left(C\left(c_{1}, c_{2}\right)\right)
$$

where

$$
C\left(c_{1}, c_{2}\right) \equiv\left[\alpha c_{1}^{\frac{\theta-1}{\theta}}+(1-\alpha) c_{2}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}, \quad 0<\alpha<1, \text { and } \theta>0
$$

subject to the budget constraint

$$
p_{1} c_{1}+p_{2} c_{2} \leq y
$$

The function C is a constant elasticity of substitution aggregator and overall utility U is some monotonic increasing transformation V of C. The parameter $\theta>0$ is the elasticity of substitution between c_{1} and c_{2}. When $\theta \rightarrow \infty$ the two goods are perfect substitutes, when $\theta \rightarrow 0$ the two goods are perfect complements, and when $\theta \rightarrow 1$ the utility function is Cobb-Douglas. (You need to use l'Hôpital's rule to show this last claim). The parameter α will turn out to measure an expenditure share.

Let's solve this problem. The first order conditions are

$$
\begin{aligned}
& V^{\prime}\left(C\left(c_{1}, c_{2}\right)\right) \frac{\partial C\left(c_{1}, c_{2}\right)}{\partial c_{1}}=\lambda p_{1} \\
& V^{\prime}\left(C\left(c_{1}, c_{2}\right)\right) \frac{\partial C\left(c_{1}, c_{2}\right)}{\partial c_{2}}=\lambda p_{2}
\end{aligned}
$$

for some unknown Lagrange multiplier λ. Computing the marginal utilities on the left hand side

$$
\begin{aligned}
& \frac{\partial C\left(c_{1}, c_{2}\right)}{\partial c_{1}}=\frac{\theta}{\theta-1}\left[\alpha c_{1}^{\frac{\theta-1}{\theta}}+(1-\alpha) c_{2}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}-1} \frac{\theta-1}{\theta} \alpha c_{1}^{\frac{\theta-1}{\theta}-1} \\
& \frac{\partial C\left(c_{1}, c_{2}\right)}{\partial c_{2}}=\frac{\theta}{\theta-1}\left[\alpha c_{1}^{\frac{\theta-1}{\theta}}+(1-\alpha) c_{2}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}-1} \frac{\theta-1}{\theta}(1-\alpha) c_{2}^{\frac{\theta-1}{\theta}-1}
\end{aligned}
$$

The marginal rate of substitution at an optimum is therefore

$$
\frac{\alpha}{1-\alpha} \frac{c_{1}^{\frac{\theta-1}{\theta}-1}}{c_{2}^{\frac{\theta-1}{\theta}-1}}=\frac{\alpha}{1-\alpha} \frac{c_{1}^{\frac{-1}{\theta}}}{c_{2}^{-\frac{-1}{\theta}}}=\frac{\alpha}{1-\alpha}\left(\frac{c_{1}}{c_{2}}\right)^{-\frac{1}{\theta}}=\left(\frac{p_{1}}{p_{2}}\right)
$$

or

$$
\left(\frac{c_{1}}{c_{2}}\right)=\left(\frac{1-\alpha}{\alpha}\right)^{\theta}\left(\frac{p_{1}}{p_{2}}\right)^{-\theta}
$$

Notice that this implies

$$
\frac{d \log \left(\frac{c_{1}}{c_{2}}\right)}{d \log \left(\frac{p_{1}}{p_{2}}\right)}=-\theta
$$

which justifies the name given to the aggregator.
Now we can solve for the demand functions by combining this tangency condition with the budget constraint. That is,

$$
\begin{aligned}
y & =p_{1} c_{1}+p_{2} c_{2} \\
& =\left[p_{1}\left(\frac{1-\alpha}{\alpha}\right)^{\theta}\left(\frac{p_{1}}{p_{2}}\right)^{-\theta}+p_{2}\right] c_{2}
\end{aligned}
$$

so

$$
\begin{aligned}
& \hat{c}_{2}=\frac{1}{1+\left(\frac{1-\alpha}{\alpha}\right)^{\theta}\left(\frac{p_{1}}{p_{2}}\right)^{1-\theta}}\left(\frac{y}{p_{2}}\right)=\frac{\alpha^{\theta} p_{2}^{1-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\left(\frac{y}{p_{2}}\right) \\
& \hat{c}_{1}=\frac{\left(\frac{1-\alpha}{\alpha}\right)^{\theta}\left(\frac{p_{1}}{p_{2}}\right)^{-\theta}}{1+\left(\frac{1-\alpha}{\alpha}\right)^{\theta}\left(\frac{p_{1}}{p_{2}}\right)^{1-\theta}}\left(\frac{y}{p_{2}}\right)=\frac{(1-\alpha)^{\theta} p_{1}^{1-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\left(\frac{y}{p_{1}}\right)
\end{aligned}
$$

Computing the price index

We now want to find functions $C\left(\hat{c}_{1}, \hat{c}_{2}\right)$ and $P\left(p_{1}, p_{2}\right)$ such that

$$
p_{1} \hat{c}_{1}+p_{2} \hat{c}_{2}=P\left(p_{1}, p_{2}\right) C\left(\hat{c}_{1}, \hat{c}_{2}\right)
$$

and

$$
U\left(\hat{c}_{1}, \hat{c}_{2}\right)=V\left(C\left(\hat{c}_{1}, \hat{c}_{2}\right)\right)
$$

at the utility maximizing demands \hat{c}_{1}, \hat{c}_{2}. Mechanically, we do this by minimizing expenditure $P C$ subject to the constraint that $C=1$.

Now $C=1$ if and only if

$$
U\left(\hat{c}_{1}, \hat{c}_{2}\right)=\left[\alpha \hat{c}_{1}^{\frac{\theta-1}{\theta}}+(1-\alpha) \hat{c}_{2}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}=1
$$

Plugging in the demand functions with $y=P C=P$ gives

$$
1=\left\{\alpha\left[\frac{\alpha^{\theta} p_{2}^{1-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\left(\frac{P}{p_{2}}\right)\right]^{\frac{\theta-1}{\theta}}+(1-\alpha)\left[\frac{(1-\alpha)^{\theta} p_{1}^{1-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\left(\frac{P}{p_{1}}\right)\right]^{\frac{\theta-1}{\theta}}\right\}^{\frac{\theta}{\theta-1}}
$$

We need to solve this expression for P as a function of p_{1} and p_{2}. Write

$$
\begin{aligned}
1 & =\left\{\alpha^{\theta}\left[\frac{p_{2}^{1-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\left(\frac{P}{p_{2}}\right)\right]^{\frac{\theta-1}{\theta}}+(1-\alpha)^{\theta}\left[\frac{p_{1}^{1-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\left(\frac{P}{p_{1}}\right)\right]^{\frac{\theta-1}{\theta}}\right\}^{\frac{\theta}{\theta-1}} \\
& =\left\{\alpha^{\theta}\left[\frac{P p_{2}^{-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\right]^{\frac{\theta-1}{\theta}}+(1-\alpha)^{\theta}\left[\frac{P p_{1}^{-\theta}}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\right]^{\frac{\theta-1}{\theta}}\right\}^{\frac{\theta}{\theta-1}} \\
& =\left\{\left[\frac{P}{\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}}\right]^{\frac{\theta-1}{\theta}}\left[\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}\right]\right\}^{\frac{\theta}{\theta-1}}
\end{aligned}
$$

Hence

$$
\frac{P^{\frac{\theta-1}{\theta}}}{\left[\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}\right]^{\frac{\theta-1}{\theta}}}=\left[\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}\right]^{-1}
$$

or

$$
P=\left[\alpha^{\theta} p_{2}^{1-\theta}+(1-\alpha)^{\theta} p_{1}^{1-\theta}\right]^{\frac{1}{1-\theta}}
$$

After all that algebra, we see that the price index is itself a CES aggregate of the individual prices p_{1} and p_{2}. We will use this result in our model of complete markets with non-traded goods (see Note 4a).

