
316-406 Advanced Macroeconomic Techniques
Problem Set #2 Selected answers

Question 1. The relevant plots are attached (see Figure 1) and can be produced with
the Matlab code "ps2_solutions.m". When a = 0.5, the process quickly begins to fluctuate
in an obviously mean-reverting manner around 0 (in the case of b = 0) or 2 (in the case of
b = 1). For the relatively low value of a, increasing the sample size from T = 100 to T = 500
does not make much difference. When a = 0.99, the process is much more persistent. (It is
not obviously mean-reverting, is it?). This is particularly a problem when b = 1 and we start
the model at x0 = 0. When b = 1 and a = 0.99, the long run mean of the process is 100 and
it takes quite a while for the process to wander towards that value. If we were simulating
this model and wanted only realizations from the long run distribution, we would be best
advised to iterate long enough to get away from any dependence on the initial condition.

Question 2. The stationary distribution π̄ is the eigenvector associated with the unit
eigenvalue in the problem
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Because of the linear dependency, this only gives us one equation in the two unknowns,
namely

(1− p)π̄1 − (1− p)π̄2 = 0⇔ π̄1 = π̄2
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Now consider the mean and variance of the stationary distribution
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Now let’s consider the autocorrelation coefficient

Corr{Xt,Xt−1} =
Cov(Xt,Xt−1)
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So all we have to do is compute the term E{XtXt−1}. To do this recall that if we have two
random variables X and Y , then we compute expectations by taking sums over the joint
distribution. In this serially correlated case, we have
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where the conditional distribution is given by the transition matrix P , that is

π(xj|xi) = Pr(Xt+1 = xj|Xt = xi) = Pij

So
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Putting this together with our previous calculation

Corr{Xt,Xt−1} = E{XtXt−1}− µ2

σ2
= 2p− 1

So, when p = 1
2
, the serial correlation is zero and the Markov chain is IID. When p → 1,

there is perfect positive serial correlation. When p→ 0, then there is perfect negative serial
correlation.
The code needed to run the simulations is in "ps2_solutions.m". In my runs, this gives

rise to the table

T = 50 T = 100 T = 1000

p = 0.1
x̄ = 0.0216
s = 0.0404
ρ = −0.8397

x̄ = 0.0200
s = 0.0402
ρ = −0.8788

x̄ = 0.0206
s = 0.0400
ρ = −0.7782

p = 0.5
x̄ = 0.0280
s = 0.0396
ρ = 0.0209

x̄ = 0.0168
s = 0.0401
ρ = −0.1183

x̄ = 0.0195
s = 0.0400
ρ = −0.0052

p = 0.9
x̄ = 0.0328
s = 0.0383
ρ = 0.7725

x̄ = 0.0160
s = 0.0400
ρ = 0.7348

x̄ = 0.0193
s = 0.0400
ρ = 0.8178
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Recall that in each case the population moments are µ = 0.02 and σ = 0.04 with autocor-
relation = −0.8, 0.0, 0.8 depending on the value of p. Generally, we see that the larger the
sample size the closer the sample statistics to their population counterparts.

Question 3. Let

ui =
c1−γi

1− γ

Then the vector v is found from

v =
∞X
t=0
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(βP )tu

Because 0 < β < 1 and P is a stochastic matrix, the sequence (βP )t is convergent and we
can write

v = (I − βP )−1u

which is the natural matrix analogue of the usual formula for a geometric series.
Until the initial state is known, v is random with expected value

V = E{v} =
X
i

viπ0,i

Now let

P1 =

µ
1 0
0 1

¶
, P2 =

µ
0.5 0.5
0.5 0.5

¶
With γ = 2.5, the expected payoffs are

V
(2.5)
(P1)

= −7.2630
V
(2.5)
(P2)

= −7.2630
So the consumer is indifferent, despite the fact that P1 is entirely persistent while P2 is
IID. Why? Notice that the consumer does not know which state she will begin in and that
she is assigned to the initial state with half/half probability. Therefore under P1 she has a
50% probability of being stuck with consumption c = cL = 1 and a 50% chance of getting
c = cH = 5 forever. On the other hand, under P2 she is not stuck and spends half her time
in the high state and half her time in the low state. So ex ante she is indifferent between
the two chains. This reasoning does not depend on the level of risk aversion, so we are not
surprised that she is still indifferent when γ = 4.0, that is

V
(4.0)
(P1)

= −3.3600
V
(4.0)
(P2)

= −3.3600
Alternatively, if the initial distribution gave a high probability to the high state, then ob-
viously she would prefer the chain with transitions P1, and similarly she would prefer the
chain with transitions P2 if the initial distribution gave high probability to the low state.

Question 4. The "big" Markov chain has four states

x = (xHH , xHL, xLH , xLL)
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where

xHH = (gH , eH)

xHL = (gH , eL)

xLH = (gL, eH)

xLL = (gL, eL)

The transition matrix for this chain has the structure

π(xj|xi) = Pr(Xt+1 = xj|Xt = xi) = Pij

Px =


pHH,HH pHL,HH pLH,HH pLL,HH

pHH,HL pHL,HL pLH,HL pLL,HL

pHH,LH pHL,LH pLH,LH pLL,LH
pHH,LL pHL,LL pLH,LL pLL,LL


where, for example,

pHL,HH = Pr(Xt+1 = xHL|Xt = xHH)

= Pr

µ
Gt+1 = gH
Et+1 = eL

¯̄̄̄
Gt = gH
Et = eH

¶
= Pr (Et+1 = eL|Et = eH , Gt = gH)× Pr(Gt+1 = gH |Gt = gH)

= pH12q11

where pH12 is the 1, 2 element of the matrix PH . Similar reasoning leads to

Px =


pH11q11 pH12q11 pL11q12 pL12q12
pH21q11 pH22q11 pL21q12 pL22q12
pH11q21 pH12q21 pL11q22 pL12q22
pH21q21 pH22q21 pL21q22 pL22q22


Notice that this is a bona-fide transition matrix so that, for example,

pH11q11 + pH12q11 + pL11q12 + pL12q12 = pH11q11 + (1− pH11)q11 + pL11(1− q11) + (1− pL11)(1− q11)

= 1

In Matlab we can easily set up the transition matrix Px by writing it as

Px =

µ
q11PH q12PL

q21PH q22PL

¶
To complete the description of the Markov chain, we have the initial distribution

πx0 = (1, 0, 0, 0)

(since we know that we start for sure in state xHH = (gH , eH).
For the transition matrices

Q =

µ
0.99 0.01
0.25 0.75

¶
, PH =

µ
0.99 0.01
0.9 0.1

¶
, PL =

µ
0.5 0.5
0.1 0.9

¶
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the attached Matlab code computes the invariant distribution

π̄x = (π̄xHH , π̄
x
HL, π̄

x
LH , π̄

x
LL)

= (0.9503, 0.0112, 0.0109, 0.0275)

The economy is in recession with probability 0.0109 + 0.0275 = 0.0384 or 3.85% of the time
while an individual is unemployed with probability 0.0112+0.0275 = 0.0387 or 3.87% of the
time. A figure shows some sample realizations from this Markov chain.
For the transition matrices

Q =

µ
0.99 0.01
0.01 0.99

¶
, PH =

µ
0.99 0.01
0.99 0.01

¶
, PL =

µ
0.5 0.5
0.5 0.5

¶
the invariant distribution is

π̄x = (π̄xHH , π̄
x
HL, π̄

x
LH , π̄

x
LL)

= (0.495, 0.005, 0.25, 0.25)

The economy is in recession with probability 0.25+ 0.25 = 0.50 or 50% of the time while an
individual is unemployed with probability 0.005 + 0.25 = 0.255 or 2.55% of the time.
A figure shows some sample realizations from this Markov chain. For clarity, I made the

samples of length T = 250 in this case. As you can see, when the economy is in recession,
the conditional volatility of employment status is much higher. This second example has the
same properties as the first, but I made the transition properties higher so as to emphasize
the state-dependent nature of the conditional volatility.

Chris Edmond
5 September 2004
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