For this problem set you should use Harald Uhlig's Matlab "toolkit" for solving log-linear models. Save Uhlig's files "solve.m" and "options.m" to your local directory, then follow the example in my program "stochastic_growth.m" to set up the coefficients. All of these files will be available on the class website.

Question 1. (Real Business Cycles). Consider the social planning problem of maximizing utility

$$
\mathrm{E}_{0}\left\{\sum_{t=0}^{\infty} \beta^{t}\left[\log \left(c_{t}\right)+\log \left(\ell_{t}\right)\right]\right\}
$$

subject to a resource constraint

$$
c_{t}+k_{t+1}=z_{t} k_{t}^{\alpha} n_{t}^{1-\alpha}+(1-\delta) k_{t}, \quad k_{0} \text { given }
$$

and a constraint on the time endowment

$$
n_{t}+\ell_{t}=1
$$

Let log technology follow an $\operatorname{AR}(1)$,

$$
\log \left(z_{t+1}\right)=\rho \log \left(z_{t}\right)+\varepsilon_{t+1}, \quad 0<\rho<1
$$

where $\left\{\varepsilon_{t+1}\right\}$ is Gaussian white noise with initial realization z_{0} given.

- Derive first order conditions that characterize optimal choices of consumption, employment, and capital accumulation.
- Let the parameters of the model be

Symbol	Meaning	Value
β	time discount factor	0.99
α	capital's share in national output	0.33
δ	depreciation rate of physical capital	0.04
ρ	serial correlation of technology shock	0.95

Solve for the non-stochastic steady state.

- Log-linearize the model around the non-stochastic steady state. Show that the loglinear model can be written in the form

$$
\begin{aligned}
0 & =A X_{t}+B X_{t-1}+C Y_{t}+D Z_{t} \\
0 & =\mathrm{E}_{t}\left\{F X_{t+1}+G X_{t}+H X_{t-1}+J Y_{t+1}+K Y_{t}+L Z_{t+1}+M Z_{t}\right\} \\
Z_{t+1} & =N Z_{t}+\varepsilon_{t+1}
\end{aligned}
$$

Provide explicit solutions for each of the coefficients, A, B, C, \ldots, N. In these equations, X_{t} contains the endogenous state variables, Y_{t} contains the control variables, and Z_{t} contains the exogenous state variables. As part of your answer, you will need to explain exactly which variables from the model are in each of X_{t}, Y_{t} and Z_{t}.

Question 2. (Uhlig's Toolkit). Guess that a solution takes the form

$$
\begin{aligned}
X_{t} & =P X_{t-1}+Q Z_{t} \\
Y_{t} & =R X_{t-1}+S Z_{t}
\end{aligned}
$$

for unknown coefficient matrices P, Q, R, S. Use Harald Uhlig's Matlab "toolkit" to solve for these coefficients matrices.
Question 3. (Impulse Responses). Use your answers to compute the effect of a one-time shock to the level of productivity. That is, set the value of $\varepsilon_{0}=1$ and $\varepsilon_{t}=0$ for $t \geq 1$ and trace out the effects on productivity, consumption, employment, investment and output. Graph your answers for $t=0,1, \ldots, 50$. Briefly explain your answers.
Question 4. (Simulations). For $t=1, \ldots, 1000$, sample random draws for $\left\{\varepsilon_{t+1}\right\}$ and iterate on the laws of motion to compute paths for $\left\{X_{t}\right\},\left\{Y_{t}\right\}$ and $\left\{Z_{t}\right\}$. Then drop the first 500 observations of each series and compute the standard deviations of each of the variables over the remaining $t=501, \ldots 1000$ observations. Explain why you drop these initial values. Report the standard deviation of each variable as a ratio to the standard deviation of output. Explain your answers.

