
316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 5c

Chris Edmond hcpedmond@unimelb.edu.aui

Introduction to numerical dynamic programming

We’ll now turn to simple numerical methods for solving dynamic programming problems. The main

method we will be interested in is based on value function iteration.

So, consider the stochastic growth model with Bellman equation

V (k, z) = max
k0≥0

{U(c) + βE[V (k0, z0)|z]}

where the maximization is subject to the resource constraint

c+ k0 ≤ zf(k) + (1− δ)k

and the technology shock z follows an m-state Markov chain with transition matrix P and typical

element

pij = Pr(z
0 = zj |z = zi), i, j = 1, ...,m

Assume that the initial distribution is degenerate so that the initial technology shock z0 is known.

Write the support of the Markov chain as

z ∈ Z = (z1 < z2 < · · · < zm)

The vector Z has m elements and is ordered.

A. Discrete-state methods

Suppose that the capital stock k is constrained to belong to a discrete set of values, i.e., a grid

k ∈ K = (k1 < k2 < · · · < kn)

The vector K has n elements and is ordered. We will discuss how the discretization is done later.

For now, just note that we have a vector of possible choices for the capital stock. Again, consider

the Bellman equation

V (k, z) = max
k0≥0

{U [zf(k) + (1− δ)k − k0] + βE[V (k0, z0)|z]}

1



If the current period’s state is some (kh, zi) ∈ K ×Z, then this is equivalent to

V (kh, zi) = max
k0∈K

U [zif(kh) + (1− δ)kh − k0] + β
mX
j=1

pijV (k
0, zj)


Notice that V (kh, zi) is just a table (i.e., a matrix) that gives the values associated with each point

in the state space K ×Z.
In what follows, I will suppose that the Markov chain hasm = 2 elements. The generalization

to bigger m is obvious, I simply want to make the exposition below as straightforward as possible.

I don’t want to drown in sub- and super-scripts.

Define two vectors V1 and V2 with typical elements

V1(h) ≡ V (kh, z1)

V2(h) ≡ V (kh, z2)

Each of these vectors is n × 1. Similarly, define two "reward" matrices, R1 and R2 with typical

elements

R1(i, h) ≡ U [z1f(ki) + (1− δ)ki − kh]

R2(i, h) ≡ U [z2f(ki) + (1− δ)ki − kh]

For each shock we have a square matrix n × n that computes for each capital stock ki (row) all

the possible period utilities associated with possible choices kh (column). So we say, for example,

R1(i, h) is the period reward associated with choosing capital stock kh for tomorrow given that

today’s capital stock is ki and the technology shock is z1.

Stack the vectors V1, V2 into a matrix V = [V1, V2] and define an operation T that associates

vectors [V1, V2], with new vectors TV = [TV1, TV2]. To do this, we represent the right hand side of

the Bellman equation for each shock zi by

TV1 = max
©
R1 + βp111V

0
1 + βp121V

0
2

ª
TV2 = max

©
R2 + βp211V

0
1 + βp221V

0
2

ª
In a slight abuse of our previous notation, the prime (0) here indicates vector transposition. The 1

indicates an n× 1 vector of ones.

2



Notice that the term inside the braces is an n × n matrix. When Matlab applies the max

operator to an n × n matrix, it returns a 1 × n row vector whose elements are the maximums of

each column of the matrix. For example,

[u, t] = max


0 1 9

1 3 7

2 2 0


in Matlab produces a 1× 3 row vector u whose elements are the maximums of each column of the
matrix

u =

µ
2 3 9

¶
and a 1× n row vector t whose elements tell you which row of the matrix attains the maximum in

that column

t =

µ
3 2 1

¶
Begin the iteration with a guess, say V 0 = [V 01 , V

0
2 ] = 0 and apply the matrix operation T

to get V 1 = TV 0. (I use super-scripts here to distinguish between, say, the iterate matrix V 1 and

the vector V1 that is the first column of some arbitrary V ). If

max
n
max{

¯̄̄
V 0 − TV 0

¯̄̄o
} < ε

for some pre-specified tolerance level ε, we stop. Otherwise, we iterate for l = 0, 1, ... on V l 7→
TV l = V l+1 until we have satisfied the convergence criterion,

max
n
max{

¯̄̄
V l − TV l

¯̄̄o
} < ε

Typically, this criterion is a number like ε = 10−6.

B. Policy functions

Once we have solved the value function iteration problem, we can back out other objects of interest.

For example, once we have the solution to the fixed point problem, call it V = [V1, V2], we can

compute policy functions g(kh, zi) for each (kh, zi) ∈ K ×Z.

3



We are interested in vectors g1 and g2 with typical elements of the form

g1(h) ≡ g(kh, z1)

g2(h) ≡ g(kh, z2)

These are computed from the right hand side of the Bellman equation

[u1, t1] = max (R1 + βp111V
0
1 + βp121V

0
2)

[u2, t2] = max (R2 + βp211V
0
1 + βp221V

0
2)

Then the policy functions are

g1(h) = K(t1(h))
g2(h) = K(t2(h))

for h = 1, ..., n. That is, the policy functions gi are built up by evaluating the grid of capital stocks

K at the levels of the capital stock ti that attain the maximum.
Chris Edmond

5 September 2004

4


