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Notes on computing and simulating Markov chains

Consider a two-state Markov chain (x, P, π0) with transition matrix

P =

 1− p p

q 1− q


for 1 > p, q > 0. Then this Markov chain has a unique invariant distribution π̄ which we can solve

for as follows

0 = (I − P 0)π̄

or  0

0

 =


 1 0

0 1

−
 1− p q

p 1− q



 π̄1

π̄2


=

 p −q
−p q


 π̄1

π̄2


Carrying out the calculations, we see that

0 = pπ̄1 − qπ̄2

0 = −pπ̄1 + qπ̄2

These two equations only tell us one piece of information, namely

π̄1 =
q

p
π̄2

But we also know that these elements must satisfy

π̄1 + π̄2 = 1
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So we can solve these two equations in two unknowns to get

π̄1 =
q

p+ q
, π̄2 =

p

p+ q

Notice the following properties:

• As q → 0, the state x1 becomes a transient state and the state x2 becomes an absorbing

state: once the chain leaves x1, it never returns. Since this happens with probability 1 if we

run the chain long enough, the stationary distribution will be degenerate with π̄ → (0, 1).

• Similarly, as p → 0, the state x2 becomes a transient state and the state x1 becomes an

absorbing state and π̄ → (1, 0).

• If p = q, the chain is symmetric and the stationary distribution is just π̄ = (0.5, 0.5). More

generally, for any n state symmetric Markov chain, the uniform distribution with π̄i =
1
n is

a stationary distribution.

Because any dependence on transient states washes out in the long run, it is often easy to

simplify the computation of a stationary distribution. For example, if n = 3 and

P =


0.7 0.2 0.1

0 0.5 0.5

0 0.9 0.1


The state x1 is transient (once you leave it, you never return), so the invariant distribution can be

found by considering the sub-matrix in the lower right corner, namely

Psub =

 0.5 0.5

0.9 0.1


Letting p = 0.5 and q = 0.9 we see that P has stationary distribution with π̄1 = 0 and non-zero

elements

π̄2 =
q

p+ q
=

0.9

0.5 + 0.9
= 0.6429

π̄3 =
p

p+ q
=

0.5

0.5 + 0.9
= 0.3571
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Now test your intuition. Is it obvious that a Markov chain with transition matrix

P =


0 1

2
1
2

1
3

1
3

1
3

0 0 1


has stationary distribution π̄ = (0, 0, 1)?

A. Computing stationary distributions in Matlab

If the transition matrix P is regular, with 1 > pij > 0 for each i, j, then the Markov chain has a

unique stationary distribution and it can be computed with brute force. Just take PT for T a large

number. Then you will get back a matrix with identical rows that are equal to the chain’s stationary

distribution. For example, if

P =


0.7 0.2 0.1

0 0.5 0.5

0 0.9 0.1


Then

P 1000 =


0 0.6429 0.3571

0 0.6429 0.3571

0 0.6429 0.3571


and the stationary distribution is π̄ = (0, 0.6429, 0.3571), which is what we would get from the

analytic approach taken above. This is not very elegant. A neater approach is to use Matlab to

compute the eigenvalues and vectors of P .

Step 1. Compute matrix of eigenvalues and eigenvectors of P 0 (remember the transpose!). In Matlab,

[V, D] = eig(P0)

gives a matrix of eigenvectors V and a diagonal matrix D whose entries are the eigenvalues

of P 0.

Step 2. Now since P is a transition matrix, one of the eigenvalues is 1. Pick the column of V associated

with the eigenvalue 1. With the matrix P given above, this will be the second column and
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we will have

v = V(:, 2) =


0

−0.8742
−0.4856


Step 3. Finally, normalize the eigenvector to sum to one, that is

pibar = v/sum(v) =


0

0.6429

0.3571



B. Simulating Markov chains in Matlab

In the problem set, you will have to simulate an n state Markov chain (x, P, π0) for t = 0, 1, 2, ..., T

time periods. I use a bold x to distinguish the vector of possible state values from sample realizations

from the chain. Iterating on the Markov chain will produce a sample path {xt}Tt=0 where for each
t, xt ∈ x. In the exposition below, I suppose that n = 2 for simplicity so that the transition matrix
can be written

P =

 p1 1− p1

p2 1− p2


Step 1. Set values for each of (x, P, π0).

Step 2. Determine the initial state, x0. To do this, draw a random variable from a uniform distri-

bution on [0,1]. Call that realization ε0. In Matlab, this can be done with the rand()

command. If the number ε0 ≤ π0,1, set x0 = x(1). Otherwise, if ε0 > π0,1 set x0 = x(2).

Step 3. Draw a vector of length T of independent random variables from a uniform distribution on

[0,1]. Call a typical realization εt. Again, in Matlab this can be done with the command

rand(T,1). Now the current state is xt = x(i), check if εt ≤ pi,1. If so, the state transits

to xt+1 = x(j) with j 6= i. Otherwise, if εt > pi,1, the state remains at i and xt+1 = x(i).

Iterating in this manner builds up an entire simulation.

The attached Matlab file markov_example.m is a function file that implements this procedure

for an arbitrary chain (x, P, π0) and specified simulation length T .
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C. Example

Let the growth rate of log GDP be

xt+1 ≡ log(yt+1)− log(yt)

and suppose that {Xt} follows a 3 state Markov chain with

x = (µ− σ, µ, µ+ σ) = (−0.02, 0.02, 0.04)

and transition probabilities

P =


0.5 0.5 0

0.03 0.90 0.07

0 0.20 0.80


The idea here is that the economy can either be shrinking, x = µ−σ < 0, growing at its usual pace,

x = µ > 0, or growing even faster. If the economy is in recession, there is about a 50/50 chance

of reverting back to the average growth rate. If the economy is growing at its average pace, there

is a slight probability of it falling into recession and a slightly bigger probability of it growing even

faster, etc. We simulate a Markov chain on x and then recover the level of output via the sum

log(yt) = log(y0) +
tX

k=1

xk, t ≥ 1

Attached is Matlab code which produces a simulation of this stochastic growth process assuming

π0 = (0, 1, 0), simulation length T = 100 and initial condition log(y0) = 0.

Chris Edmond

22 August 2004
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