Chris Edmond 〈cpedmond@unimelb.edu.au〉

Notes on computing and simulating Markov chains

Consider a two-state Markov chain $\left(x, P, \pi_{0}\right)$ with transition matrix

$$
P=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

for $1>p, q>0$. Then this Markov chain has a unique invariant distribution $\bar{\pi}$ which we can solve for as follows

$$
0=\left(I-P^{\prime}\right) \bar{\pi}
$$

or

$$
\begin{aligned}
\binom{0}{0} & =\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
1-p & q \\
p & 1-q
\end{array}\right)\right]\binom{\bar{\pi}_{1}}{\bar{\pi}_{2}} \\
& =\left(\begin{array}{cc}
p & -q \\
-p & q
\end{array}\right)\binom{\bar{\pi}_{1}}{\bar{\pi}_{2}}
\end{aligned}
$$

Carrying out the calculations, we see that

$$
\begin{aligned}
& 0=p \bar{\pi}_{1}-q \bar{\pi}_{2} \\
& 0=-p \bar{\pi}_{1}+q \bar{\pi}_{2}
\end{aligned}
$$

These two equations only tell us one piece of information, namely

$$
\bar{\pi}_{1}=\frac{q}{p} \bar{\pi}_{2}
$$

But we also know that these elements must satisfy

$$
\bar{\pi}_{1}+\bar{\pi}_{2}=1
$$

So we can solve these two equations in two unknowns to get

$$
\bar{\pi}_{1}=\frac{q}{p+q}, \quad \bar{\pi}_{2}=\frac{p}{p+q}
$$

Notice the following properties:

- As $q \rightarrow 0$, the state x_{1} becomes a transient state and the state x_{2} becomes an absorbing state: once the chain leaves x_{1}, it never returns. Since this happens with probability 1 if we run the chain long enough, the stationary distribution will be degenerate with $\bar{\pi} \rightarrow(0,1)$.
- Similarly, as $p \rightarrow 0$, the state x_{2} becomes a transient state and the state x_{1} becomes an absorbing state and $\bar{\pi} \rightarrow(1,0)$.
- If $p=q$, the chain is symmetric and the stationary distribution is just $\bar{\pi}=(0.5,0.5)$. More generally, for any n state symmetric Markov chain, the uniform distribution with $\bar{\pi}_{i}=\frac{1}{n}$ is a stationary distribution.

Because any dependence on transient states washes out in the long run, it is often easy to simplify the computation of a stationary distribution. For example, if $n=3$ and

$$
P=\left(\begin{array}{ccc}
0.7 & 0.2 & 0.1 \\
0 & 0.5 & 0.5 \\
0 & 0.9 & 0.1
\end{array}\right)
$$

The state x_{1} is transient (once you leave it, you never return), so the invariant distribution can be found by considering the sub-matrix in the lower right corner, namely

$$
P_{\mathrm{sub}}=\left(\begin{array}{cc}
0.5 & 0.5 \\
0.9 & 0.1
\end{array}\right)
$$

Letting $p=0.5$ and $q=0.9$ we see that P has stationary distribution with $\bar{\pi}_{1}=0$ and non-zero elements

$$
\begin{aligned}
& \bar{\pi}_{2}=\frac{q}{p+q}=\frac{0.9}{0.5+0.9}=0.6429 \\
& \bar{\pi}_{3}=\frac{p}{p+q}=\frac{0.5}{0.5+0.9}=0.3571
\end{aligned}
$$

Now test your intuition. Is it obvious that a Markov chain with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 1
\end{array}\right)
$$

has stationary distribution $\bar{\pi}=(0,0,1)$?

A. Computing stationary distributions in Matlab

If the transition matrix P is regular, with $1>p_{i j}>0$ for each i, j, then the Markov chain has a unique stationary distribution and it can be computed with brute force. Just take P^{T} for T a large number. Then you will get back a matrix with identical rows that are equal to the chain's stationary distribution. For example, if

$$
P=\left(\begin{array}{ccc}
0.7 & 0.2 & 0.1 \\
0 & 0.5 & 0.5 \\
0 & 0.9 & 0.1
\end{array}\right)
$$

Then

$$
P^{1000}=\left(\begin{array}{ccc}
0 & 0.6429 & 0.3571 \\
0 & 0.6429 & 0.3571 \\
0 & 0.6429 & 0.3571
\end{array}\right)
$$

and the stationary distribution is $\bar{\pi}=(0,0.6429,0.3571)$, which is what we would get from the analytic approach taken above. This is not very elegant. A neater approach is to use Matlab to compute the eigenvalues and vectors of P.

Step 1. Compute matrix of eigenvalues and eigenvectors of P^{\prime} (remember the transpose!). In Matlab,

$$
[\mathrm{V}, \mathrm{D}]=\mathrm{eig}\left(\mathrm{P}^{\prime}\right)
$$

gives a matrix of eigenvectors V and a diagonal matrix D whose entries are the eigenvalues of P^{\prime}.
Step 2. Now since P is a transition matrix, one of the eigenvalues is 1 . Pick the column of V associated with the eigenvalue 1 . With the matrix P given above, this will be the second column and
we will have

$$
\mathrm{v}=\mathrm{V}(:, 2)=\left(\begin{array}{c}
0 \\
-0.8742 \\
-0.4856
\end{array}\right)
$$

Step 3. Finally, normalize the eigenvector to sum to one, that is

$$
\text { pibar }=v / \operatorname{sum}(v)=\left(\begin{array}{c}
0 \\
0.6429 \\
0.3571
\end{array}\right)
$$

B. Simulating Markov chains in Matlab

In the problem set, you will have to simulate an n state Markov chain (x, P, π_{0}) for $t=0,1,2, \ldots, T$ time periods. I use a bold \mathbf{x} to distinguish the vector of possible state values from sample realizations from the chain. Iterating on the Markov chain will produce a sample path $\left\{x_{t}\right\}_{t=0}^{T}$ where for each $t, x_{t} \in \mathbf{x}$. In the exposition below, I suppose that $n=2$ for simplicity so that the transition matrix can be written

$$
P=\left(\begin{array}{ll}
p_{1} & 1-p_{1} \\
p_{2} & 1-p_{2}
\end{array}\right)
$$

Step 1. Set values for each of $\left(\mathbf{x}, P, \pi_{0}\right)$.
Step 2. Determine the initial state, x_{0}. To do this, draw a random variable from a uniform distribution on $[0,1]$. Call that realization ε_{0}. In Matlab, this can be done with the rand() command. If the number $\varepsilon_{0} \leq \pi_{0,1}$, set $x_{0}=\mathbf{x}(1)$. Otherwise, if $\varepsilon_{0}>\pi_{0,1}$ set $x_{0}=\mathbf{x}(2)$.
Step 3. Draw a vector of length T of independent random variables from a uniform distribution on $[0,1]$. Call a typical realization ε_{t}. Again, in Matlab this can be done with the command $\operatorname{rand}(T, 1)$. Now the current state is $x_{t}=\mathbf{x}(i)$, check if $\varepsilon_{t} \leq p_{i, 1}$. If so, the state transits to $x_{t+1}=\mathbf{x}(j)$ with $j \neq i$. Otherwise, if $\varepsilon_{t}>p_{i, 1}$, the state remains at i and $x_{t+1}=\mathbf{x}(i)$. Iterating in this manner builds up an entire simulation.

The attached Matlab file markov_example.m is a function file that implements this procedure for an arbitrary chain (\mathbf{x}, P, π_{0}) and specified simulation length T.

C. Example

Let the growth rate of log GDP be

$$
x_{t+1} \equiv \log \left(y_{t+1}\right)-\log \left(y_{t}\right)
$$

and suppose that $\left\{X_{t}\right\}$ follows a 3 state Markov chain with

$$
x=(\mu-\sigma, \mu, \mu+\sigma)=(-0.02,0.02,0.04)
$$

and transition probabilities

$$
P=\left(\begin{array}{ccc}
0.5 & 0.5 & 0 \\
0.03 & 0.90 & 0.07 \\
0 & 0.20 & 0.80
\end{array}\right)
$$

The idea here is that the economy can either be shrinking, $x=\mu-\sigma<0$, growing at its usual pace, $x=\mu>0$, or growing even faster. If the economy is in recession, there is about a $50 / 50$ chance of reverting back to the average growth rate. If the economy is growing at its average pace, there is a slight probability of it falling into recession and a slightly bigger probability of it growing even faster, etc. We simulate a Markov chain on x and then recover the level of output via the sum

$$
\log \left(y_{t}\right)=\log \left(y_{0}\right)+\sum_{k=1}^{t} x_{k}, \quad t \geq 1
$$

Attached is Matlab code which produces a simulation of this stochastic growth process assuming $\pi_{0}=(0,1,0)$, simulation length $T=100$ and initial condition $\log \left(y_{0}\right)=0$.

Chris Edmond
22 August 2004

