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Again, we will adopt the following notational conventions: random variables will be denoted by

capital letters, like Xt and Zt, realizations of random variables will be denoted by corresponding

little letters, say xt and zt, a stochastic process will be a sequence of random variables, say {Xt}
and {Zt}, and a sample path will be a sequence of realizations, say {xt} and {zt}.

Markov chains

Roughly speaking, a stochastic process {Xt} has the Markov property if the probability distrib-
utions

Pr(Xt+1 ≤ x|xt, xt−1, · · ·xt−k) = Pr(Xt+1 ≤ x|xt)

for any k ≥ 2. A Markov chain is a stochastic process with this property and which takes values in
a finite set. A Markov chain (x, P, π) is characterized by a a triple of three objects: a state space

identified with an n-vector x, an n-by-n transition matrix P , and an initial distribution, an

n-vector π0.

Let

x = (x1, · · · , xn)

Then the transition matrix P = [pij ] has elements with the interpretation

pij = Pr(Xt+1 = xj |Xt = xi)

So, fix a row i. Then the elements in each of the j columns give the conditional probabilities of

transiting from state xi to state xj . In order for these to be well-defined probabilities, we require

1 ≥ pij ≥ 0, i, j = 1, 2, ...n

and for each i,
nX

j=1

pij = 1, i = 1, 2, ...n

For example, if n = 2 and

P =

 1
2
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

1



then the conditional probability of moving from state i = 1 to i = 2 is p12 = 1
2 while the conditional

probability of moving from state i = 2 to i = 1 is only p21 = 1
10 . Notice that the diagonal elements

of P give a notion of the persistence of the chain, because these elements give the probability of

staying in a given state. As another example, consider

P =

 1
2

1
2

0 1


This has the property that if you are in state i = 1, you can move to state i = 2 with probability

p12 =
1
2 but if you are in i = 2, you are stuck there. In this case, i = 2 is said to be an absorbing

state.

Similarly, the initial distribution π0 = [π0,i] has elements with the interpretation

π0,i = Pr(X0 = xi)

And in order for these to be well-defined probabilities, we require

1 ≥ π0,i ≥ 0, i = 1, 2, ...n

and
nX
i=1

π0,i = 1

In applications, we often set the initial distribution to have πi = 1 for some i and zero everywhere

else so that the chain is started in state i with probability 1.

A. Higher order transitions

The main convenience of the Markov chain model is the ease with which they can be manipulated

using ordinary linear algebra. For example,

Pr(Xt+2 = xj |Xt = xi) =
nX

k=1

Pr(Xt+2 = xj |Xt+1 = xk) Pr(Xt+1 = xk|Xt = xi)

=
nX

k=1

pkjpik

= (P 2)ij
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where (P 2)ij is the ij element of the matrix P 2 = PP . In general, (P 2)ij 6= p2ij where the latter is

the square of the ij element of P . More generally,

Pr(Xt+s = xj |Xt = xi) = (P
s)ij

The Markov chain gives a law of motion for probability distributions over a finite set

of possible state values. The sequence of unconditional probability distributions is {πt}∞t=0 where
each πt is an n-vector. Let πt = [πt,i] be a vector whose elements have the interpretation

πt,i = Pr(Xt = xi)

Then the sequence of probability distributions are computed using

π01 = π00P

π02 = π01P = π00P
2

...

π0t = π0t−1P = π00P
t

where a prime (0) denotes the transpose. In short, probability distributions π0t evolve according to

the linear homogeneous system of difference equations

πt+1 = P 0πt

We already know a lot about solving systems of such difference equations.

The conditional and unconditional moments of the Markov chain can be calculated using

similar reasoning. For example,

E{X1} = π00x

E{X2} = π00Px

and

E{Xt} = π00P
tx
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while conditional expectations are

E{Xt+k|Xt = x} = P kx

Similarly, let g be a n-vector that represents a function with typical element g(x) on the state x.

Then

E{g(Xt+k)|Xt = x} = P kg

B. Stationary distributions

A steady-state or stationary probability distribution is a vector π̄ such that

π̄0 = π̄0P

or equivalently

(P 0 − I)π̄ = 0

Recall that a scalar λ is an eigenvalue of P 0 if and only if P 0 − λI is a singular matrix. A square

matrix P 0 is singular if and only if its determinant is zero. Hence λ is an eigenvalue of P 0 if and

only if

det(P 0 − λI) = 0

An equivalent way of saying that a matrix A is non-singular is to say that the only solution of the

equation Ay = 0 is y = 0. Equivalently, P 0 is singular if and only if Ay = 0 has solutions other than

y = 0. Hence if λ is an eigenvalue of P 0 such that A = P 0 − λI is singular, there must be solutions

other than y = 0 to the equation Ax = (P 0 − λI)y = 0. Equivalently, if λ is an eigenvalue of P 0,

there must be at least one vector y 6= 0, called an eigenvector, such that

P 0y = λy, y 6= 0

In the context of our Markov chain model, a stationary probability distribution is an eigenvector

y = π̄ associated with a unit eigenvalue λ = 1 of P 0. The requirement that
Pn

i=1 π̄i = 1 is a

normalization of the eigenvector.

Because 1 ≥ pij ≥ 0 and Pn
i=1 pij = 1, any transition matrix P must have at least one unit

eigenvalue λ = 1, but there may be more than one such eigenvalue. Hence there may be more than
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one stationary distribution. For example, if

P =


1 0 0

1
5

1
2

3
10

0 0 1


then the matrix P has two unit eigenvalues (one corresponding to the 1 in the first row, the other

corresponding to the 1 in the third row) and the associated Markov chain has two stationary distri-

butions, namely π̄1 = [1, 0, 0] and π̄2 = [0, 0, 1].

Moreover, even if a Markov chain has a unique stationary distribution, there is no guarantee

that the chain will asymptotically converge to that unique stationary distribution for all initial

conditions. A sufficient condition for the existence of a unique asymptotically stable stationary

distribution is that 1 > pij > 0 for each i, j so that the chain has no absorbing states.

Chris Edmond
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